Israel Journal of Mathematics

, Volume 230, Issue 2, pp 653–692 | Cite as

Homology of the family of hyperelliptic curves

  • Filippo CallegaroEmail author
  • Mario Salvetti


Homology of braid groups and Artin groups can be related to the study of spaces of curves. We completely calculate the integral homology of the family of smooth curves of genus g with one boundary component, that are double coverings of the disk ramified over n = 2g+1 points. The main part of such homology is described by the homology of the braid group with coefficients in a symplectic representation, namely the braid group Brn acts on the first homology group of a genus g surface via Dehn twists. Our computations show that such groups have only 2-torsion. We also investigate stabilization properties and provide Poincaré series, for both unstable and stable homology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bia16]
    A. Bianchi, Embeddings of braid groups into mapping class groups, Master Thesis, University of Pisa, 2016 .Google Scholar
  2. [Bri73]
    E. Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol’d], in Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Mathematics, Vol. 317, Springer, Berlin, 1973, pp. 21–44.Google Scholar
  3. [Cal06]
    F. Callegaro, The homology of the Milnor fiber for classical braid groups, Algebraic and Geometric Topology 6 (2006), 1903–1923.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [CCS13]
    F. Callegaro, F. R. Cohen and M. Salvetti, The cohomology of the braid group B3 and of SL2(Z) with coefficients in a geometric representation, Quarterly Journal of Mathematics 64 (2013), 847–889.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Che17]
    W. Chen, Homology of braid groups, the burau representation, and points on superelliptic curves over finite fields, Israel Journal of Mathematics 220 (2017), 739–546.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CM14]
    F. Callegaro and I. Marin, Homology computations for complex braid groups, Journal of the European Mathematical Society 16 (2014), 103–164.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [CMS08]
    F. Callegaro, D. Moroni and M. Salvetti, Cohomology of affine Artin groups and applications, Transactions of the AmericanMathematical Society 360 (2008), 4169–4188.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Coh76]
    F. R. Cohen, The homology of Cn+1-spaces, n ≥ 0, in The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin–New York, 1976, pp. 207–353.Google Scholar
  9. [Coh88]
    F. R. Cohen, Artin’s braid groups, classical homotopy theory, and sundry other curiosities, in Braids (Santa Cruz, CA, 1986), Contemporary Mathematics, Vol. 78, American Mathematical Society, Providence, RI, 1988, pp. 167–206.Google Scholar
  10. [DPS01]
    C. De Concini, C. Procesi and M. Salvetti, Arithmetic properties of the cohomology of braid groups, Topology 40 (2001), 739–751.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [EVW16]
    J. S. Ellenberg, A. Venkatesh and C. Westerland, Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields, Annals of Mathematics 183 (2016), 729–786.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [FN62]
    E. Fadell and L. Neuwirth, Configuration spaces, Mathematica Scandinavica 10 (1962), 111–118.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Fuk70]
    D. B. Fuks, Cohomology of the braid group mod 2, Functional Analysis and its Applications 4 (1970), 143–151.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Ful69]
    W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Annals of Mathematics 90 (1969), 542–575.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Gor78]
    V. V. Gorjunov, The cohomology of braid groups of series C and D and certain stratifications, Funktsional’nyĭ Analiz i ego Prilozheniya 12 (1978), 76–77.MathSciNetGoogle Scholar
  16. [Hat02]
    A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.zbMATHGoogle Scholar
  17. [Leh04]
    G. I. Lehrer, Rational points and cohomology of discriminant varieties, Advances in Mathematics 186 (2004), 229–250.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [MSV12]
    D. Moroni, M. Salvetti and A. Villa, Some topological problems on the configuration spaces of Artin and Coxeter groups, in Configuration Spaces, Centro di Ricerca Matematica Ennio de Giorgi Series, Vol. 14, Edizioni della Scuola Normale di Pisa, Pisa, 2012, pp. 403–431.Google Scholar
  19. [PV92]
    B. Perron and J. Vannier, Groupe de monodromie géométrique des singularités simples, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 315 (1992), 1067–1070.zbMATHGoogle Scholar
  20. [RW14]
    O. Randal-Williams and N. Wahl, Homological stability for automorphism groups, Advances in Mathematics 318 (2017), 534–626.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Sal94]
    M. Salvetti, The homotopy type of Artin groups, Mathematical Research Letters 1 (1994), 565–577.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Vaĭ78]
    F. V. Vaĭnšteĭn, The cohomology of braid groups, Funktsional’nyĭ Analiz i ego Prilozheniya 12 (1978), 72–73.MathSciNetCrossRefGoogle Scholar
  23. [Vas92]
    V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Translations of Mathematical Monographs, Vol. 98, American Mathematical Society, Providence, RI, 1992.Google Scholar
  24. [Waj99]
    B. Wajnryb, Artin groups and geometric monodromy, Inventiones Mathematicae 138 (1999), 563–571.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations