Advertisement

Israel Journal of Mathematics

, Volume 230, Issue 2, pp 583–612 | Cite as

Spectrum and combinatorics of two-dimensional Ramanujan complexes

  • Konstantin GolubevEmail author
  • Ori Parzanchevski
Article
  • 25 Downloads

Abstract

Ramanujan graphs have extremal spectral properties, which imply a remarkable combinatorial behavior. In this paper we compute the high dimensional Hodge–Laplace spectrum of Ramanujan triangle complexes, and show that it implies a combinatorial expansion property, and a pseudorandomness result. For this purpose we prove a Cheeger-type inequality and a mixing lemma of independent interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC88]
    N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete Mathematics 72 (1988), 15–19.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AM85]
    N. Alon and V. D. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators, Journal of Combinatorial Theory. Series B 38 (1985), 73–88.CrossRefGoogle Scholar
  3. [Bor76]
    A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Inventiones Mathematicae 35 (1976), 233–259.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Cas74]
    W. Casselman, On a p-adic vanishing theorem of Garland, Bulletin of the American Mathematical Society 80 (1974), 1001–1004.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cas80]
    W. Casselman, The unramified principal series of p-adic groups. I. The spherical function, Compositio Mathematica 40 (1980), 387–406.MathSciNetzbMATHGoogle Scholar
  6. [CHH88]
    M. Cowling, U. Haagerup and R. Howe, Almost L 2 matrix coefficients, Journal für die Reine und Angewandte Mathematik 387 (1988), 97–110.MathSciNetzbMATHGoogle Scholar
  7. [CS02]
    D. I. Cartwright and T. Steger, Elementary symmetric polynomials in numbers of modulus 1, Canadian Journal of Mathematics 54 (2002), 239–262.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [CSŻ03]
    D. I. Cartwright, P. Solé and A. Żuk, Ramanujan geometries of type A˜n, Discrete Mathematics 269 (2003), 35–43.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Eck44]
    B. Eckmann, Harmonische funktionen und randwertaufgaben in einem komplex, Commentarii Mathematici Helvetici 17 (1944), 240–255.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [EGL15]
    S. Evra, K. Golubev and A. Lubotzky, Mixing properties and the chromatic number of Ramanujan complexes, International Mathematics Research Notices 22 (2015), 11520–11548.MathSciNetzbMATHGoogle Scholar
  11. [FGL+12]
    J. Fox, M. Gromov, V. Lafforgue, A. Naor and J. Pach, Overlap properties of geometric expanders, Journal für die Reine und Angewandte Mathematik 671 (2012), 49–83.MathSciNetzbMATHGoogle Scholar
  12. [Fir16]
    U. A. First, The Ramanujan property for simplicial complexes, preprint, arXiv:1605.02664.Google Scholar
  13. [FP87]
    J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), 71–76.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Gar73]
    H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Annals of Mathematics 97 (1973), 375–423.Google Scholar
  15. [GS14]
    A. Gundert and M. Szedlák, Higher dimensional Cheeger inequalities, in Computational Geometry SoCG’14, ACM, New York, 2014, pp. 181–188.Google Scholar
  16. [GW13]
    A. Gundert and U. Wagner, On expansion and spectral properties of simplicial complexes, Ph.D. thesis, ETH Zürich, Switzerland, 2013, Diss. ETH No. 21600 of Anna Gundert.zbMATHGoogle Scholar
  17. [HLW06]
    S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (2006), 439–562.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Hof70]
    A. J. Hoffman, On eigenvalues and colorings of graphs, in Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969), Academic Press, New York, 1970, pp. 79–91.Google Scholar
  19. [KLW10]
    M. H. Kang, W. C.W. Li and C. J. Wang, The zeta functions of complexes from PGL(3): a representation-theoretic approach, Israel Journal of Mathematics 177 (2010), 335–348.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Li04]
    W. C. W. Li, Ramanujan hypergraphs, Geometric and Functional Analysis 14 (2004), 380–399.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [LM07]
    A. Lubotzky and R. Meshulam, A Moore bound for simplicial complexes, Bulletin of the London Mathematical Society 39 (2007), 353–358.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [LPS88]
    A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–277.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [LSV05a]
    A. Lubotzky, B. Samuels and U. Vishne, Ramanujan complexes of type A˜d, Israel Journal of Mathematics 149 (2005), 267–299.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [LSV05b]
    A. Lubotzky, B. Samuels and U. Vishne, Explicit constructions of Ramanujan complexes of type A˜d, European Journal of Combinatorics 26 (2005), 965–993.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Lub94]
    A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Progress in Mathematics, Vol. 125, Birkhäuser Verlag, Basel, 1994.zbMATHGoogle Scholar
  26. [Lub12]
    A. Lubotzky, Expander graphs in pure and applied mathematics, Bulletin of the American Mathematical Society 49 (2012), 113–162.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Lub14]
    A. Lubotzky, Ramanujan complexes and high dimensional expanders, Japanese Journal of Mathematics 9 (2014), 137–169.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Mac79]
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York, 1979.zbMATHGoogle Scholar
  29. [Mar88]
    G. A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), 51–60.zbMATHGoogle Scholar
  30. [Pap08]
    M. Papikian, On eigenvalues of p-adic curvature, Manuscripta Mathematica 127 (2008), 397–410.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Par17]
    O. Parzanchevski, Mixing in high-dimensional expanders, Combinatorics, Probability and Computing 26 (2017), 746–761.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [PR17]
    O. Parzanchevski and R. Rosenthal, Simplicial complexes: Spectrum, homology and random walks, Random Structures & Algorithms 50 (2017), 225–261.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [PRT16]
    O. Parzanchevski, R. Rosenthal and R. J. Tessler, Isoperimetric inequalities in simplicial complexes, Combinatorica 36 (2016), 195–227.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Sar90]
    P. Sarnak, Some Applications of Modular Forms, Cambridge Tracts in Mathematics, Vol. 99, Cambridge University Press, Cambridge, 1990.Google Scholar
  35. [Sar07]
    A. Sarveniazi, Explicit construction of a Ramanujan (n1, n2,...,nd−1)-regular hypergraph, Duke Mathematical Journal 139 (2007), 141–171.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [Tad86]
    M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Annales Scientifiques de l’École Normale Supérieure 19 (1986), 335–382.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [Zel80]
    A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Annales Scientifiques de l’École Normale Supérieure 13 (1980), 165–210.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Einstein Institute of MathematicsThe Hebrew University of Jerusalem Givat RamJerusalemIsrael
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations