Advertisement

Israel Journal of Mathematics

, Volume 230, Issue 2, pp 563–581 | Cite as

Harmonic functions vanishing on a cone

  • Dan Mangoubi
  • Adi Weller WeiserEmail author
Article
  • 40 Downloads

Abstract

Let Z be a quadratic harmonic cone in ℝ3. We consider the family \(\mathcal{H}(Z)\) of all harmonic functions vanishing on Z. Is \(\mathcal{H}(Z)\) finite or infinite dimensional? Some aspects of this question go back to as early as the 19th century. To the best of our knowledge, no nondegenerate quadratic harmonic cone exists for which the answer to this question is known. In this paper we study the right circular harmonic cone and give evidence that the family of harmonic functions vanishing on it is, maybe surprisingly, finite dimensional. We introduce an arithmetic method to handle this question which extends ideas of Holt and Ille and is reminiscent of Hensel’s Lemma.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. L. Agranovsky and Y. Krasnov, Quadratic divisors of harmonic polynomials in Rn, Journal d’Analyse Mathématique 82 (2000), 379–395.CrossRefzbMATHGoogle Scholar
  2. [2]
    D. H. Armitage, Cones on which entire harmonic functions can vanish, Proceedings of the Royal Irish Academy. Section A. Mathematical and Physical Sciences 92 (1992), 107–110.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Bourgain and Z. Rudnick, On the nodal sets of toral eigenfunctions, Inventiones Mathematicae 185 (2011), 199–237.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, New York, 1953.zbMATHGoogle Scholar
  5. [5]
    J. B. Holt, On the irreducibility of Legendre’s polynomials, Proceedings of the London Mathematical Society 2 (1913), 126–132.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Ille, Zur Irreduzibilität der Kugelfunktionen, PhD thesis, Universität Berlin, 1924.Google Scholar
  7. [7]
    A. Logunov and E. Malinnikova, On ratios of harmonic functions, Advances in Mathematics 274 (2015), 241–262.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Logunov and E. Malinnikova, Ratios of harmonic functions with the same zero set, Geometric and Functional Analysis 26 (2016), 909–925.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Mangoubi, A gradient estimate for harmonic functions sharing the same zeros, Electronic Research Announcements in Mathematical Sciences 21 (2014), 62–71.MathSciNetGoogle Scholar
  10. [10]
    C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse (1929), Nr. 1; reprint in On Some Applications of Diophantine Approximations, Publications of the Scuola Normale Superiore, Vol. 2, Edizioni della Normale, Pisa, 2014, pp. 81–138.Google Scholar
  11. [11]
    T. J. Stieltjes, Letter no: 275 of Oct. 2, 1890, in Correspondance d’Hermite et de Stieltjes. Volume 2, Gauthier-Villars, Paris, 1905, pp. 104–106.Google Scholar
  12. [12]
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944.Google Scholar
  13. [13]
    A. Weller Weiser, Topics in the study of harmonic functions in three dimensions, Master’s thesis, The Hebrew University of Jerusalem, 2014.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Einstein Institute of MathematicsThe Hebrew University of JerusalemGivat Ram, JerusalemIsrael

Personalised recommendations