Advertisement

Transference and preservation of uniqueness

  • Ivan G. TodorovEmail author
  • Lyudmila Turowska
Article
  • 6 Downloads

Abstract

Motivated by the notion of a set of uniqueness in a locally compact group G, we introduce and study ideals of uniqueness in the Fourier algebra A(G) of G, and their accompanying operator version, masa-bimodules of uniqueness. We establish a transference between the two notions, and use this result to show that the property of being an ideal of uniqueness is preserved under natural operations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Anoussis, A. Katavolos and I. G. Todorov, Ideals of A(G) and bimodules over maximal abelian selfadjoint algebras, Journal of Functional Analysis 266 (2014), 6473–6500.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. B. Arveson, Operator algebras and invariant subspaces, Annals of Mathematics 100 (1974), 433–532.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. P. Blecher and C. Le Merdy, Operator Algebras and their Modules—an Operator Apace Approach, London Mathematical Society Monographs, Vol. 30, Clarendon Press, Oxford University Press, Oxford, 2004.Google Scholar
  4. [4]
    M. Bo˙zejko, Sets of uniqueness on noncommutative locally compact groups, Proceedings of the American Mathematical Society 64 (1977), 93–96.MathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Bo˙zejko and G. Fendler, Herz–Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Unione Matematica Italiana. Bollettino. A. Serie VI 2 (1984), 297–302.MathSciNetzbMATHGoogle Scholar
  6. [6]
    J. De Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, American Journal of Mathematics 107 (1985), 455–500.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. K. Eleftherakis and I. G. Todorov, Operator synthesis and tensor products, Transactions of the American Mathematical Society 368 (2016), 5271–5300.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. A. Erdos, A. Katavolos and V. S. Shulman, Rank one subspaces of bimodules over maximal abelian selfadjoint algebras, Journal of Functional Analysis 157 (1998), 554–587.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bulletin de la Société Mathématique de France 92 (1964), 181–236.Google Scholar
  10. [10]
    B. Forrest, Amenability and ideals in A(G), Journal of the Australian Mathematical Society. Series A 53 (1992), 143–155.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. Forrest, E. Kanuith, A. T. Lau and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, Journal of Functional Analysis 203 (2003), 286–304.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 238, Springer-Verlag, New York–Berlin, 1979.Google Scholar
  13. [13]
    P. Jolissaint, A characterisation of completely bounded multipliers of Fourier algebras, Colloquium Mathematicum 63 (1992), 311–313.Google Scholar
  14. [14]
    J. Kraus, The slice map problem for σ-weakly closed subspaces of von Neumann algebras, Transactions of the American Mathematical Society 279 (1983), 357–376.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J. Ludwig and L. Turowska, On the connection between sets of operator synthesis and sets of spectral synthesis for locally compact groups, Journal of Functional Analysis 233 (2006), 206–227.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    V. Peller, Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funktsional’nyĭ Analiz i ego Prilozheniya 19 (1985), 37–51, 96.MathSciNetGoogle Scholar
  17. [17]
    V. S. Shulman, I. G. Todorov and L. Turowska, Closable multipliers, Integral Equations and Operator Theory 69 (2011), 29–62.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    V. S. Shulman, I. G. Todorov and L. Turowska, Sets of multiplicity and closable multipliers of group algebras, Journal of Functional Analysis 268 (2015), 1454–1508.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    V. S. Shulman and L. Turowska, Operator synthesis I. Synthetic sets, bilattices and tensor algebras, Journal of Functional Analysis 209 (2004), 293–331.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    N. Spronk, Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proceedings of the London Mathematical Society 89 (2004), 161–192.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    I. G. Todorov, Interactions between Harmonic Analysis and Operator Theory, Serdica 41 (2015), 13–34.MathSciNetzbMATHGoogle Scholar
  22. [22]
    A. Ülger, Relatively weak*-closed ideals of A(G), sets of synthesis and sets of uniqueness, Colloquium Mathematicum 136 (2014), 271–296.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Pure Mathematics Research CentreQueen’s University BelfastBelfastUnited Kingdom
  2. 2.Department of Mathematical SciencesChalmers University of Technology and the University of GothenburgGothenburgSweden

Personalised recommendations