Using the Steinberg algebra model to determine the center of any Leavitt path algebra

  • Lisa Orloff ClarkEmail author
  • Dolores Martín Barquero
  • Cándido Martín González
  • Mercedes Siles Molina


Given an arbitrary graph, we describe the center of its Leavitt path algebra over a commutative unital ring. Our proof uses the Steinberg algebra model of the Leavitt path algebra. A key ingredient is a characterization of compact open invariant subsets of the unit space of the graph groupoid in terms of the underlying graph: an open invariant subset is compact if and only if its associated hereditary and saturated set of vertices satisfies Condition (F). We also give a basis of the center. Its cardinality depends on the number of minimal compact open invariant subsets of the unit space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Abrams, P. Ara and M. Siles Molina, Leavitt Path Algebras, Lecture Notes in Mathematics, Vol. 2191, Springer, London, 2017.Google Scholar
  2. [2]
    A. Alahmadi and H. Alsuulami, Centers of Leavitt path algebras and their completions, Journal of Algebra and its Applications 16 (2017), 1750090, 20.MathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Aranda Pino and K. Crow, The center of a Leavitt path algebra, Revista Matemática Iberoamericana 27 (2011), 621–644.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. H. Brown and A. an Huef, The center of a Kumjian–Pask algebra, Revista Matemática Iberoamericana 30 (2014), 1387–1396.MathSciNetCrossRefGoogle Scholar
  5. [5]
    L. O. Clark, C. Farthing, A. Sims and M. Tomforde, A groupoid generalisation of Leavitt path algebras, Semigroup Forum 89 (2014), 501–517.MathSciNetCrossRefGoogle Scholar
  6. [6]
    L. O. Clark, D. Martín Barquero, C. Martín González and M. Siles Molina, Using Steinberg algebras to study decomposability of Leavitt path algebras, Forum Mathematicum 29 (2017), 1311–1324.MathSciNetzbMATHGoogle Scholar
  7. [7]
    L. O. Clark and A. Sims, Equivalent groupoids have Morita equivalent Steinberg algebras, Journal of Pure and Applied Algebra 219 (2015), 2062–2075.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. G. Corrales García, D. Martín Barquero, C. Martín González, M. Siles Molina and J. F. Solanilla Hernández, Centers of path algebras, Cohn and Leavitt path algebras, Bulletin of the Malaysian Mathematical Sciences Society 40 (2017), 1745–1767.CrossRefGoogle Scholar
  9. [9]
    M. G. Corrales García, D. Martín Barquero, C. Martín González, M. Siles Molina and J. F. Solanilla Hernández, Extreme cycles. The center of a Leavitt path algebra, Publicacions Matemàtiques 60 (2016), 235–263.MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids, and Cuntz–Krieger algebras, Journal of Functional Analysis 144 (1997), 505–541.MathSciNetCrossRefGoogle Scholar
  11. [11]
    A. L. T. Paterson, Graph inverse semigroups, groupoids and their C*-algebras, Journal of Operator Theory 48 (2002), 645–662.MathSciNetzbMATHGoogle Scholar
  12. [12]
    I. Raeburn, Graph Algebras, CBMS Regional Conference Series inMathematics, Vol. 103, American Mathematical Society, Providence, RI, 2005.CrossRefGoogle Scholar
  13. [13]
    J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793, Springer, Berlin, 1980.Google Scholar
  14. [14]
    B. Steinberg, A groupoid approach to discrete inverse semigroup algebras, Advances in Mathematics 223 (2010), 689–727.MathSciNetCrossRefGoogle Scholar
  15. [15]
    S. B. G. Webster, The path space of a directed graph, Proceedings of the American Mathematical Society 142 (2014), 213–225.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  • Lisa Orloff Clark
    • 1
    Email author
  • Dolores Martín Barquero
    • 2
  • Cándido Martín González
    • 3
  • Mercedes Siles Molina
    • 3
  1. 1.School of Mathematics and StatisticsVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Departamento de Matemática Aplicada, Escuela de Ingenierías IndustrialesUniversidad de MálagaMálagaSpain
  3. 3.Departamento de Álgebra Geometría y Topología, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations