Advertisement

Linearly and directionally bounded weak-star closed sets and the AFPP

  • Tomás Domínguez Benavides
  • Maria A. Japón
  • Jeimer Villada Bedoya
Article
  • 3 Downloads

Abstract

Linearly bounded and directionally bounded closed convex sets play a very relevant role in metric fixed point theory [12, 14, 16]. In reflexive spaces both collections of sets are identical and this fact characterizes the reflexivity of the space [14, 16]. Since closed convex sets are weakstar closed in reflexive spaces, it is natural to ask about the relationship between linearly bounded and directionally bounded sets in the case of a non-reflexive dual space if we assume, in addition, that the set is weak-star closed. We will show two divergent answers to this question depending on certain topological and isometric properties of the underlying dual Banach space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Benyamini and J. Lindenstrauss, A predual of 1 which is not isomorphic to a C(K) space, Israel Journal of Mathematics 13 (1972), 246–254.MathSciNetCrossRefGoogle Scholar
  2. [2]
    C. Bessaga and A. Pelczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Mathematica 19 (1960), 53–62.MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Casini, E. Miglierina and L. Piasecki, Hyperplanes in the space of convergent sequences and preduals of 1, Canadian Mathematical Bulletin 58 (2015), 459–470.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Casini, E. Miglierina, L. Piasecki and R. Popescu, Stability constants of the w-fixed point property for the spaces 1, Journal of Mathematical Analysis and Applications 452 (2017), 673–684.MathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Domínguez Benavides, On the failure of the fixed point property for some unbounded subsets of 1, Journal of Nonlinear and Convex Analysis 17 (2016), 1249–1257.MathSciNetzbMATHGoogle Scholar
  6. [6]
    P. N. Dowling, C. J. Lennard and B. Turett, Renormings of 1 and c0 and fixed point properties, in Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 269–297.zbMATHGoogle Scholar
  7. [7]
    N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience, New York, 1958.zbMATHGoogle Scholar
  8. [8]
    H. Fetter, M. A. Japón and J. Villada Bedoya, Reflexivity is equivalent to stability of the almost fixed point property, Journal of Mathematical Analysis and Applications 459 (2018), 789–796.MathSciNetCrossRefGoogle Scholar
  9. [9]
    K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and AppliedMathematics, Vol. 83, Marcel Dekker, New York, 1984.zbMATHGoogle Scholar
  10. [10]
    P. K. Lin, There is an equivalent norm on 1 that has the fixed point property, Nonlinear Analysis 68 (2008), 2303–2308.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer, Berlin–New York, 1977.Google Scholar
  12. [12]
    E. Matoušková and S. Reich, Reflexivity and approximate fixed points, Studia Mathematica 159 (2003), no. 3, 403-415.Google Scholar
  13. [13]
    A. Pelczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces C(Ω) for Ω without perfect subsets, Studia Mathematica 18 (1959), 211–222.MathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Reich, The almost fixed point property for nonexpansive mappings, Proceedings of the American Mathematical Society 88 (1983), 44–46.MathSciNetCrossRefGoogle Scholar
  15. [15]
    W. Rudin, Continuous functions on compact spaces without perfect subsets, Proceedings of the American Mathematical Society 8 (1957), 39–42.MathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Shafrir, The approximate fixed point property in Banach and hyperbolic spaces, Israel Journal of Mathematics 71 (1990), 211–223.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  • Tomás Domínguez Benavides
    • 1
  • Maria A. Japón
    • 1
  • Jeimer Villada Bedoya
    • 2
  1. 1.Departamento de Análisis MatemáticoUniversidad de SevillaSevillaSpain
  2. 2.Centro de Investigación en MatemáticasJalisco s/n, ValencianaGuanajuato, Gto.Mexico

Personalised recommendations