Advertisement

Ziegler spectra of serial rings

  • Lorna Gregory
  • Gena Puninski
Article
  • 1 Downloads

Abstract

In this paper we prove that the Ziegler spectra of all serial rings are sober. We then use this proof to give a general framework for computing and understanding the T0-quotients of Ziegler spectra of uniserial rings. Finally, we illustrate this technique by computing the T0-quotients of Ziegler spectra of all rank one uniserial domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBT84]
    C. Bessenrodt, H.-H. Brungs and G. Törner, Right Chain Rings, Part 1, Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Vol. 181, University of Duisburg, Duisburg, 1990.zbMATHGoogle Scholar
  2. [BD03]
    H. H. Brungs and N. I. Dubrovin, A classification and examples of rank one chain domains, Transactions of the American Mathematical Society 355 (2003), 2733–2753.MathSciNetCrossRefGoogle Scholar
  3. [BHP+17]
    S. Bazzoni, I. Herzog, P. Příhoda, J. Šaroch and J. Trlifaj, Pure projective tilting modules, https://arxiv.org/abs/1703.04745.Google Scholar
  4. [DP07]
    N. Dubrovin and G. Puninski, Classifying projective modules over some semilocal rings, Journal of Algebra and its Applications 6 (2007), 839–865.MathSciNetCrossRefGoogle Scholar
  5. [EH95]
    P. C. Eklof and I. Herzog, Model theory of modules over a serial ring, Annals of Pure and Applied Logic 72 (1995), 145–176.MathSciNetCrossRefGoogle Scholar
  6. [FS01]
    L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs, Vol. 84, American Mathematical Society, Providence, RI, 2001.Google Scholar
  7. [Gre13]
    L. Gregory, Sobriety for the Ziegler spectrum of a Prüfer domain, Journal of Pure and Applied Algebra 217 (2013), 1980–1993.MathSciNetCrossRefGoogle Scholar
  8. [Her93]
    I. Herzog, Elementary duality of modules, Transactions of the American Mathematical Society 340 (1993), 37–69.MathSciNetCrossRefGoogle Scholar
  9. [Hoc69]
    M. Hochster, Prime ideal structure in commutative rings, Transactions of the American Mathematical Society 142 (1969), 43–60.MathSciNetCrossRefGoogle Scholar
  10. [Jen66]
    C. U. Jensen, Arithmetical rings, Acta Mathematica Academiae Scientiarum Hungaricae 17 (1966), 115–123.MathSciNetCrossRefGoogle Scholar
  11. [KM96]
    V. M. Kopytov and N. Ya. Medvedev, Right-ordered Groups, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1996.zbMATHGoogle Scholar
  12. [Lam99]
    T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Springer, New York, 1999.Google Scholar
  13. [PP16]
    P. Příhoda and G. Puninski, Pure projective modules over chain domains with Krull dimension, Journal of Algebra 459 (2016), 189–212.MathSciNetCrossRefGoogle Scholar
  14. [Pre88]
    M. Prest, Model Theory and Modules, London Mathematical Society Lecture Note Series, Vol. 130, Cambridge University Press, Cambridge, 1988.Google Scholar
  15. [Pre09]
    M. Prest, Purity, Spectra and Localisation, Encyclopedia of Mathematics and its Applications, Vol. 121, Cambridge University Press, Cambridge, 2009.zbMATHGoogle Scholar
  16. [Pun95]
    G. Puninski, Pure injective modules over chain rings, Proceedings of the Moscow Mathematical Society 56 (1995), 176–191.zbMATHGoogle Scholar
  17. [Pun99]
    G. Puninski, Cantor–Bendixson rank of the Ziegler spectrum over a commutative valuation domain Journal of Symbolic Logic 64 (1999), 1512–1518.Google Scholar
  18. [Pun01a]
    G. Puninski, Serial Rings, Kluwer, Dordrecht, 2001.CrossRefGoogle Scholar
  19. [Pun01b]
    G. Puninski, Some model theory over a nearly simple uniserial domain and decompositions of serial modules, Journal of Pure and Applied Algebra 163 (2001), 319–337.MathSciNetCrossRefGoogle Scholar
  20. [Pun01c]
    G. Puninski, Some model theory over an exceptional uniserial ring and decompositions of serial modules, Journal of the London Mathematical Society 64 (2001), 311–326.MathSciNetCrossRefGoogle Scholar
  21. [Pun03]
    G. Puninski, The Krull–Gabriel dimension of a serial ring, Communications in Algebra 31 (2003), 5977–5993.MathSciNetCrossRefGoogle Scholar
  22. [Pun04]
    G. Puninski, When a super-decomposable pure-injective module over a serial ring exists, in Rings, Modules, Algebras, and Abelian Groups, Lecture Notes in Pure and Applied Mathematics, Vol. 236, Dekker, New York, 2004, pp. 449–463.zbMATHGoogle Scholar
  23. [Rey99]
    G. Reynders, Ziegler spectra of serial rings with Krull dimension, Communications in Algebra 27 (1999), 2583–2611.MathSciNetCrossRefGoogle Scholar
  24. [Tug98]
    A. A. Tuganbaev, Semidistributive Modules and Rings, Mathematics and its Applications, Vol. 449, Kluwer, Dordrecht, 1998.Google Scholar
  25. [Zie84]
    M. Ziegler, Model theory of modules, Annals of Pure and Applied Logic 26 (1984), 149–213.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Division of Mathematics, School of Science and TechnologiesUniversity of CamerinoCamerinoItaly
  2. 2.Belarusian State UniversityMinskBelarus

Personalised recommendations