Advertisement

Israel Journal of Mathematics

, Volume 229, Issue 1, pp 165–179 | Cite as

Generators of semigroups on Banach spaces inducing holomorphic semiflows

  • Wolfgang Arendt
  • Isabelle ChalendarEmail author
Article
  • 32 Downloads

Abstract

Let A be the generator of a C0-semigroup T on a Banach space of analytic functions on the open unit disc. If T consists of composition operators, then there exists a holomorphic function G: \(\mathbb{D}\) → ℂ such that Af = Gf′ with maximal domain. The aim of the paper is the study of the reciprocal implication.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Aharonov, M. Elin, S. Reich and D. Shoikhet, Parametric representations of semicomplete vector fields on the unit balls of Cn in Hilbert space, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 10 (1999), 229–233.MathSciNetzbMATHGoogle Scholar
  2. [2]
    W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions, Indiana University Mathematics Journal 67 (2018), 1571–1595.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Avicou, I. Chalendar and J. R. Partington, A class of quasicontractive semigroups acting on Hardy and Dirichlet space, Journal of Evolution Equations 15 (2015), 647–665.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Avicou, I. Chalendar and J. R. Partington, Analyticity and compactness of semigroups of composition operators, Journal of Mathematical Analysis and Applications 437 (2016), 545–560.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Mathematical Journal 25 (1978), 101–115.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Blasco, M. D. Contreras, S. Diaz-Madrigal, J. Martinez, M. Papadimitrakis and A. G. Siskakis, Semigroups of composition operators and integral operators in spaces of analytic functions, Annales Academiae Scientiarum Fennicae Mathematica 38 (2013), 1–23.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Chalendar and J. R. Partington, On the structure of invariant subspaces for isometric composition operators on H2(D) and H2(C+), Archiv der Mathematik 81 (2003), 193–207.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.Google Scholar
  9. [9]
    E. Gallardo-Gutiérrez and D. Yakubovitch, On generators of C0-semigroups of composition operators, arXiv:1708.02259.Google Scholar
  10. [10]
    M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Pure and Applied Mathematics, Vol. 60, Academic Press, New York–London, 1974.Google Scholar
  11. [11]
    W. Hurewicz, Lectures on Ordinary Differential Equations, Dover publications, New-York, 1990.zbMATHGoogle Scholar
  12. [12]
    V. Matache, Composition Operators on Hardy spaces of a half-plane, Proceedings of the American Mathematical Society 127 (1999), 1483–1491.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.CrossRefzbMATHGoogle Scholar
  14. [14]
    D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.CrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Institute of Applied AnalysisUniversity of UlmUlmGermany
  2. 2.Université Paris Est Marne-la-ValléeMarne-la-Vallée, Cedex 2France

Personalised recommendations