Israel Journal of Mathematics

, Volume 229, Issue 1, pp 165–179 | Cite as

Generators of semigroups on Banach spaces inducing holomorphic semiflows

  • Wolfgang Arendt
  • Isabelle ChalendarEmail author


Let A be the generator of a C0-semigroup T on a Banach space of analytic functions on the open unit disc. If T consists of composition operators, then there exists a holomorphic function G: \(\mathbb{D}\) → ℂ such that Af = Gf′ with maximal domain. The aim of the paper is the study of the reciprocal implication.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Aharonov, M. Elin, S. Reich and D. Shoikhet, Parametric representations of semicomplete vector fields on the unit balls of Cn in Hilbert space, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 10 (1999), 229–233.MathSciNetzbMATHGoogle Scholar
  2. [2]
    W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions, Indiana University Mathematics Journal 67 (2018), 1571–1595.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Avicou, I. Chalendar and J. R. Partington, A class of quasicontractive semigroups acting on Hardy and Dirichlet space, Journal of Evolution Equations 15 (2015), 647–665.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Avicou, I. Chalendar and J. R. Partington, Analyticity and compactness of semigroups of composition operators, Journal of Mathematical Analysis and Applications 437 (2016), 545–560.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Mathematical Journal 25 (1978), 101–115.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Blasco, M. D. Contreras, S. Diaz-Madrigal, J. Martinez, M. Papadimitrakis and A. G. Siskakis, Semigroups of composition operators and integral operators in spaces of analytic functions, Annales Academiae Scientiarum Fennicae Mathematica 38 (2013), 1–23.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Chalendar and J. R. Partington, On the structure of invariant subspaces for isometric composition operators on H2(D) and H2(C+), Archiv der Mathematik 81 (2003), 193–207.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.Google Scholar
  9. [9]
    E. Gallardo-Gutiérrez and D. Yakubovitch, On generators of C0-semigroups of composition operators, arXiv:1708.02259.Google Scholar
  10. [10]
    M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Pure and Applied Mathematics, Vol. 60, Academic Press, New York–London, 1974.Google Scholar
  11. [11]
    W. Hurewicz, Lectures on Ordinary Differential Equations, Dover publications, New-York, 1990.zbMATHGoogle Scholar
  12. [12]
    V. Matache, Composition Operators on Hardy spaces of a half-plane, Proceedings of the American Mathematical Society 127 (1999), 1483–1491.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.CrossRefzbMATHGoogle Scholar
  14. [14]
    D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.CrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Institute of Applied AnalysisUniversity of UlmUlmGermany
  2. 2.Université Paris Est Marne-la-ValléeMarne-la-Vallée, Cedex 2France

Personalised recommendations