Israel Journal of Mathematics

, Volume 228, Issue 2, pp 835–861 | Cite as

Interior regularity results for zeroth order operators approaching the fractional Laplacian

  • Patricio Felmer
  • Disson dos PrazeresEmail author
  • Erwin Topp


In this article we are interested in interior regularity results for the solution \({\mu _ \in } \in C(\bar \Omega )\) of the Dirichlet problem
$$\{ _{\mu = 0in{\Omega ^c},}^{{I_ \in }(\mu ) = {f_ \in }in\Omega }$$
where Ω is a bounded, open set and \({f_ \in } \in C(\bar \Omega )\) for all є ∈ (0, 1). For some σ ∈ (0, 2) fixed, the operator \(\mathcal{I}_{\in}\) is explicitly given by
$${I_ \in }(\mu ,x) = \int_{{R^N}} {\frac{{[\mu (x + z) - \mu (x)]dz}}{{{ \in ^{N + \sigma }} + |z{|^{N + \sigma }}}}} ,$$
which is an approximation of the well-known fractional Laplacian of order σ, as є tends to zero. The purpose of this article is to understand how the interior regularity of uє evolves as є approaches zero. We establish that uє has a modulus of continuity which depends on the modulus of fє, which becomes the expected Hölder profile for fractional problems, as є → 0. This analysis includes the case when fє deteriorates its modulus of continuity as є → 0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Barles, E. Chasseigne, A. Ciomaga and C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, Journal of Differential Equations 252 (2012), 6012–6060.MathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Barles, E. Chasseigne, C. Georgelin and E. R. Jakobsen, On Neumann type problems for nonlocal equations set in a half space, Transactions of the American Mathematical Society 366 (2014), 4873–4917.MathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Barles, E. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, Journal of the European Mathematical Society 13 (2011), 1–26.MathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Barles and C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 25 (2008), 567–585.MathSciNetCrossRefGoogle Scholar
  5. [5]
    L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics 62 (2009), 597–638.MathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Archive for Rational Mechanics and Analysis 200 (2011), 59–88.MathSciNetCrossRefGoogle Scholar
  7. [7]
    L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Annals of Mathematics 130 (1989), 189–213.MathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Chasseigne, The Dirichlet problem for some nonlocal diffusion equations, Differential Integral Equations 20 (2007), 1389–1404.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. G. Crandall and P.-L. Lions, On existence and uniqueness of solutions of Hamilton–Jacobi equations, Nonlinear Analysis 10 (1986), 353–370.MathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques 136 (2012), 521–573.MathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Felmer and E. Topp, Convergence results for a class of nonlinear fractional heat equations, Israel Journal of Mathematics 198 (2013), 1–34.MathSciNetCrossRefGoogle Scholar
  12. [12]
    P. Felmer and E. Topp, Uniform equicontinuity for a family of zero order operators approaching the fractional Laplacian, Communications in Partial Differential Equations 40 (2015), 1591–1618.MathSciNetCrossRefGoogle Scholar
  13. [13]
    H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, Journal of Differential Equations 83 (1990), 26–78.MathSciNetCrossRefGoogle Scholar
  14. [14]
    H. Ishii, Existence and uniqueness of solutions of Hamilton–Jacobi equations, Funkcialaj Ekvacioj 29 (1986), 167–188.MathSciNetzbMATHGoogle Scholar
  15. [15]
    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, Journal de Mathématiques Pures et Appliquées 101 (2014), 275–302.MathSciNetCrossRefGoogle Scholar
  16. [16]
    L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal 55 (2006), 1155–1174.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  • Patricio Felmer
    • 1
  • Disson dos Prazeres
    • 2
    Email author
  • Erwin Topp
    • 3
  1. 1.Departamento de Ingeniería Matemática and CMM (UMI 2807 CNRS)Universidad de ChileSantiagoChile
  2. 2.DMAUniversidade Federal de SergipeAracajuBrazil
  3. 3.Departamento de Matemática y C.C.Universidad de Santiago de ChileSantiagoChile

Personalised recommendations