Univalent wandering domains in the Eremenko-Lyubich class

  • Núria Fagella
  • Xavier Jarque
  • Kirill LazebnikEmail author


We use the Folding Theorem of [Bis15] to construct an entire function f in class \({\cal B}\) and a wandering domain U of f such that f restricted to fn (U) is univalent, for all n ≥ 0. The components of the wandering orbit are bounded and surrounded by the postcritical set.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bak76]
    I. N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), 173–176.MathSciNetCrossRefGoogle Scholar
  2. [Bak02]
    I. N. Baker, Limit functions in wandering domains of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), 499–505.MathSciNetzbMATHGoogle Scholar
  3. [Ber57]
    L. Bers, On a theorem of Mori and the definition of quasiconformality, Trans. Amer. Math. Soc. 84 (1957), 78–84.MathSciNetCrossRefGoogle Scholar
  4. [Ber95]
    W. Bergweiler, Invariant domains and singularities, Math. Proc. Cambridge Philos. Soc. 117 (1995), 525–532.MathSciNetCrossRefGoogle Scholar
  5. [BFJK]
    K. Barański, N. Fagella, X. Jarque and B. Karpińska, Fatou components and singularities of meromorphic functions, Proc. Roy. Soc. Edinburgh Sect. A, doi:
  6. [BHK+93]
    W. Bergweiler, M. Haruta, H. Kriete, H.-G. Meier and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 369–375.MathSciNetzbMATHGoogle Scholar
  7. [Bis15]
    C. J. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), 1–60.MathSciNetCrossRefGoogle Scholar
  8. [Bis18]
    C. J. Bishop, Corrections for quasiconformal folding,
  9. [BL18]
    C. J. Bishop and K. Lazebnik, Prescribing the postsingular dynamics of meromorphic functions, Math. Ann., doi: Scholar
  10. [Dk97]
    E. M. Dyn’kin, Smoothness of a quasiconformal mapping at a point, Algebra i Analiz 9 (1997), 205–210.MathSciNetzbMATHGoogle Scholar
  11. [EL87]
    A. È. Erëmenko and M. Yu. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), 458–468.MathSciNetCrossRefGoogle Scholar
  12. [EL92]
    A. È. Erëmenko and M. Y. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.MathSciNetCrossRefGoogle Scholar
  13. [Fat20]
    P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94.MathSciNetCrossRefGoogle Scholar
  14. [FGJ15]
    N. Fagella, S. Godillon and X. Jarque, Wandering domains for composition of entire functions, J. Math. Anal. Appl. 429 (2015), 478–496.MathSciNetCrossRefGoogle Scholar
  15. [FH09]
    N. Fagella and C. Henriksen, The Teichmüller space of an entire function, in Complex Dynamics, Wellesley, MA, 2009, pp. 297–330.Google Scholar
  16. [Gai87]
    D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, MA, 1987.CrossRefGoogle Scholar
  17. [GK86]
    L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), 183–192.MathSciNetCrossRefGoogle Scholar
  18. [Hub06]
    J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006.Google Scholar
  19. [Laz17]
    K. Lazebnik. Several constructions in the Eremenko-Lyubich class, J. Math. Anal. Appl. 448 (2017), 611–632.MathSciNetCrossRefGoogle Scholar
  20. [LV73]
    O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, New York-Heidelberg, 1973.CrossRefGoogle Scholar
  21. [MBRG13]
    H. Mihaljević-Brandt and L. Rempe-Gillen, Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann. 357 (2013), 1577–1604.MathSciNetCrossRefGoogle Scholar
  22. [Mil06]
    J. Milnor, Dynamics in One Complex Variable, Princeton University Press, Princeton, NJ, 2006.zbMATHGoogle Scholar
  23. [MS18]
    D. Martí-Pete and M. Shishikura, Wandering domains for entire functions of finite order in the Eremenko-Lyubich class, Proc. London Math. Soc. (3) 120 (2020), 155–191.MathSciNetCrossRefGoogle Scholar
  24. [OS16]
    J. W. Osborne and D. J. Sixsmith, On the set where the iterates of an entire function are neither escaping nor bounded, Ann. Acad. Sci. Fenn. Math. 41 (2016), 561–578.MathSciNetCrossRefGoogle Scholar
  25. [Pom75a]
    C. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.zbMATHGoogle Scholar
  26. [Pom75b]
    C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.zbMATHGoogle Scholar
  27. [Sul85]
    D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), 401–418.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Núria Fagella
    • 1
  • Xavier Jarque
    • 1
  • Kirill Lazebnik
    • 2
    Email author
  1. 1.Departament de Matemàtiques i InformàticaInstitut de Matemàtiques de la Universitat de Barcelona and Barcelona Graduate School of MathematicsBarcelonaCatalonia
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations