Advertisement

On Hardy and Caffarelli-Kohn-Nirenberg inequalities

  • Hoai-Minh NguyenEmail author
  • Marco Squassina
Article
  • 15 Downloads

Abstract

We establish improved versions of the Hardy and Caffarelli-Kohn-Nirenberg inequalities by replacing the standard Dirichlet energy with some nonlocal nonconvex functionals which have been involved in estimates for the topological degree of continuous maps from a sphere into itself and characterizations of Sobolev spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Abdellaoui and R. Bentifour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications, J. Funct. Anal. 272 (2017), 3998–1029.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proc. Amer. Math. Soc. 130 (2002), 489–505.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, pp. 439–455.Google Scholar
  4. [4]
    J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for W s,pwhen s ↑ 1 and applications, J. Anal. Math. 87 (2002), 77–101.MathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Bourgain, H. Brezis and H.-M. Nguyen, A new estimate for the topological degree, C. R. Math. Acad. Sci. Paris 340 (2005), 787–791.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Bourgain and H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris 343 (2006), 75–80.MathSciNetCrossRefGoogle Scholar
  7. [7]
    H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Russian Math. Surveys 57 (2002), 693–708.MathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Brezis and H.-M. Nguyen, On a new class of functions related to VMO, C. R. Acad. Sci. Paris 349 (2011), 157–160.MathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Brezis and H.-M. Nguyen, The BBM formula revisited, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016), 515–533.MathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Brezis and H.-M. Nguyen, Two subtle convex nonlocal approximations of the BV-norm, Nonlinear Anal. 137 (2016), 222–245.MathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Brezis and H.-M. Nguyen, Non-convex, non-local functionals converging to the total variation, C. R. Acad. Sci. Paris 355 (2017), 24–27.MathSciNetCrossRefGoogle Scholar
  12. [12]
    H. Brezis and H.-M. Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE, onlinefirst 4 (2018), Article no. 9.Google Scholar
  13. [13]
    X. Cabré and Y. Martin, Existence versus instantaneous blowup for linear heat equations with singular potentials, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), 973–978.CrossRefGoogle Scholar
  14. [14]
    L. A. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771–831.MathSciNetCrossRefGoogle Scholar
  15. [15]
    L. A. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259–275.MathSciNetzbMATHGoogle Scholar
  16. [16]
    R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximum functions and singular integrals, Studia Math. 51 (1974), 241–250.MathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519–527.MathSciNetCrossRefGoogle Scholar
  18. [18]
    R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255, (2008), 3407–3430.MathSciNetCrossRefGoogle Scholar
  19. [19]
    V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), 230–238.MathSciNetCrossRefGoogle Scholar
  20. [20]
    B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.MathSciNetCrossRefGoogle Scholar
  21. [21]
    H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006), 689–720.MathSciNetCrossRefGoogle Scholar
  22. [22]
    H.-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007), 367–395.MathSciNetCrossRefGoogle Scholar
  23. [23]
    H.-M. Nguyen, Γ-convergence and Sobolev norms, C. R. Acad. Sci. Paris 345 (2007), 679–684.MathSciNetCrossRefGoogle Scholar
  24. [24]
    H.-M. Nguyen, Further characterizations of Sobolev spaces, J. Eur. Math. Soc. 10 (2008), 191–229.MathSciNetzbMATHGoogle Scholar
  25. [25]
    H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations 41 (2011), 483–509.MathSciNetCrossRefGoogle Scholar
  26. [26]
    H.-M. Nguyen, Γ-convergence, Sobolev norms, and BV functions, Duke Math. J. 157 (2011), 495–533.MathSciNetCrossRefGoogle Scholar
  27. [27]
    H.-M. Nguyen, A. Pinamonti, M. Squassina and E. Vecchi, New characterization of magnetic Sobolev spaces, Adv. Nonlinear Anal. 7 (2018), 227–245.MathSciNetCrossRefGoogle Scholar
  28. [28]
    H.-M. Nguyen and M. Squassina, Logarithmic Sobolev inequality revisited, C. R. Math. Acad. Sci. Paris 355 (2017), 447–451.MathSciNetCrossRefGoogle Scholar
  29. [29]
    H.-M. Nguyen and M. Squassina, Some remarks on rearrangement for nonlocal functionals, Nonlinear Anal. 162 (2017), 1–12.MathSciNetCrossRefGoogle Scholar
  30. [30]
    H.-M. Nguyen and M. Squassina, Fractional Caffarelli-Kohn-Nirenberg inequalities, J. Funct. Anal. 274 (2018), 2661–2672.MathSciNetCrossRefGoogle Scholar
  31. [31]
    L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115–162.MathSciNetzbMATHGoogle Scholar
  32. [32]
    A. Pinamonti, M. Squassina and E. Vecchi, Magnetic BV functions and the Bourgain-Brezis-Mironescu formula, Adv. Calc. Var. (2017), 12 (2019), 225–252.MathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Ponce, A new approach to Sobolev spaces and connections to T-convergence, Calc. Var. Partial Differential Equations 19 (2004), 229–255.MathSciNetCrossRefGoogle Scholar
  34. [34]
    A. Ponce and D. Spector, On formulae decoupling the total variation of BV functions, Nonlinear Anal. 154 (2017), 241–257.MathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Squassina and B. Volzone, Bourgain-Brezis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris 354 (2016), 825–831.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of MathematicsÉcole polytechnique fédérale de LausanneLausanneSwitzerland
  2. 2.Dipartimento di Matematica e FisicaUniversità Cattolica del Sacro CuoreBresciaItaly

Personalised recommendations