Discrepancy bounds for the distribution of the Riemann zeta-function and applications

  • Youness LamzouriEmail author
  • Stephen Lester
  • Maksym Radziwiłł


We investigate the distribution of the Riemann zeta-function on the line Re(s) = σ. For ½ < σ ≤ 1 we obtain an upper bound on the discrepancy between the distribution of ζ (s) and that of its random model, improving results of Harman and Matsumoto. Additionally, we examine the distribution of the extreme values of ζ (s) inside of the critical strip, strengthening a previous result of the first author.

As an application of these results we obtain the first effective error term for the number of solutions to ζ (s) = a in a strip ½ < σ1 < σ2 < 1. Previously in the strip ½ < σ< 1 only an asymptotic estimate was available due to a result of Borchsenius and Jessen from 1948 and effective estimates were known only slightly to the left of the half-line, under the Riemann hypothesis (due to Selberg). In general our results are an improvement of the classical Bohr–Jessen framework and are also applicable to counting the zeros of the Epstein zeta-function


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bohr, and B. Jessen, Über die werteverteilung der Riemannschen zetafunktion, erste Mitteilung, Acta Math. 54 (1930), 1–35.MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Bohr, and B. Jessen, Über die werteverteilung der Riemannschen zetafunktion, Acta Math. 58 (1932), 1–55.MathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Borchsenius, and B. Jessen, Mean motions and values of the Riemann zeta function, Acta Math. 80 (1948), 97–166.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Gonek, and Y. Lee, Zero-density estimates for Epstein zeta functions, Q. J. Math. 68 (2017), 301–344.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Granville, and K. Soundararajan, Extreme values of | (1 + it)|, in The Riemann Zeta Function and Related Themes: Papers in Honour of Professor K. Ramachandra, Ramanujan Mathematical Society, Mysore, 2006, pp. 65–80.Google Scholar
  6. [6]
    C. R. Guo, On the zeros of the derivative of the Riemann zeta function, Proc. London Math. Soc. (3) 72 (1996), 28–62.MathSciNetCrossRefGoogle Scholar
  7. [7]
    G. Harman, and K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-function. IV, J. London Math. Soc. (2) 50 (1994), 17–24.MathSciNetCrossRefGoogle Scholar
  8. [8]
    T. Hattori, and K. Matsumoto, Large deviations of Montgomery type and its application to the theory of zeta-functions, Acta Arith. 71 (1995), 79–94.MathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Hattori, and K. Matsumoto, A limit theorem for Bohr-Jessen’s probability measures of the Riemann zeta-function, J. Reine Angew. Math. 507 (1999), 219–232.MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2) 27 (1927), 273–300.MathSciNetzbMATHGoogle Scholar
  11. [11]
    H. Iwaniec, and E. Kowalski, Analytic Number Theory, American Mathematical Society, Providence, RI, 2004.zbMATHGoogle Scholar
  12. [12]
    B. Jessen, and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48–88.MathSciNetCrossRefGoogle Scholar
  13. [13]
    D. Joyner, Distribution Theorems of L-functions, Longman Scientific & Technical, Harlow, 1986.zbMATHGoogle Scholar
  14. [14]
    Y. Lamzouri, The two-dimensional distribution of values of ζ (1 + it), Int. Math. Res. Not. IMRN (2008), Art. ID rnn 106, 48 pp.Google Scholar
  15. [15]
    Y. Lamzouri, Extreme values of arg L(1, χ), Acta Arith. 146 (2011), 335–354.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Y. Lamzouri, On the distribution of extreme values of zeta and L-functions in the strip 12 < s < χ 1, Int. Math. Res. Not. IMRN (2011), 5449–5503.Google Scholar
  17. [17]
    E. Landau, Über die Wurzeln der Zetafunktion, Math. Z. 20 (1924), 98–104.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Y. Lee, On the zeros of Epstein zeta functions, Forum. Math. 26 (2014), 1807–1836.MathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-function. II, in Number Theory and Combinatorics, World Scientific, Singapore, 1985, pp. 265–278.Google Scholar
  20. [20]
    K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-function. III, Acta Arith. 50 (1988), 315–337.MathSciNetCrossRefGoogle Scholar
  21. [21]
    K. Matsumoto, On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products, Acta Arith. 60 (1991), 125–147.MathSciNetCrossRefGoogle Scholar
  22. [22]
    H. L. Montgomery, Extreme values of the riemann zeta function, Comment. Math. Helv. 52 (1977), 511–518.MathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in Proceedings of the Amalfi Conference on Analytic Number Theory, University of Salerno, Salerno, 1992, pp. 367–385.Google Scholar
  24. [24]
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, The Clarendon Press Oxford University Press, New York, 1986.zbMATHGoogle Scholar
  25. [25]
    Kai-Man Tsang, The Distribution of the Values of the Riemann Zeta-Function, Ph.D. Thesis, Princeton University, ProQuest LLC, Ann Arbor, MI, 1984.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Youness Lamzouri
    • 1
    Email author
  • Stephen Lester
    • 2
  • Maksym Radziwiłł
    • 3
  1. 1.Institut Elie Cartan de LorraineUniversité de LorraineVandoeuvre-Les-Nancy CedeFrance
  2. 2.School Of Mathematical SciencesQueen Mary University of LondonLondonUK
  3. 3.Department of MathematicsCalifornia Institute Of TechnologyPasadenaUSA

Personalised recommendations