Advertisement

A note on the unique extremality of spiral-stretch maps

  • Xiaogao Feng
  • Yun Hu
  • Yuliang ShenEmail author
Article
  • 7 Downloads

Abstract

In the recent paper [BFP], Balogh-Fässler-Platis proved that a spiral-stretch map is extremal for the extremal problem
$$\begin{array}{c}\rm{inf}\\ g\end{array}{\int\int_{A{_1}}}\frac{\varphi(K(w,g))}{|w|^2}dudv$$
among the set of all \(\mathbb{W}_{\rm{loc}}^{1,2}\)-homeomorphisms g with finite linear distortion K(w, g) between two annuli A1 and A2 and having the same boundary values with the spiral-stretch map. In this short note, we will give a very fast approach to this result without the \(\mathbb{W}_{\rm{loc}}^{1,2}\)-assumption. Furthermore, the unique extremality of a spiral-stretch map is also obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to thank the referee for a very careful reading of the manuscript and for several corrections.

References

  1. [AIM1]
    K. Astala, T. Iwaniec and G. J. Martin, Elliptic Partial Diffenrential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, Princeton, NJ, 2009.zbMATHGoogle Scholar
  2. [AIM2]
    K. Astala, T. Iwaniec and G. J. Martin, Deformations of annuli with smallest mean distortion, Arch. Rat. Mech. Anal. 195 (2010), 899–921.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [AIMO]
    K. Astala, T. Iwaniec, G. J. Martin and J. Onninen, Extremal mappings of finite distortion, Proc. Lond. Math. Soc. 91 (2005), 655–702.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BFP]
    Z. M. Balogh, K. Fässler and I. D. Platis, Modulus of curve families and extremality of spiral-stretch maps, J. Anal. Math. 113 (2011), 265–291.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [FTWS]
    X. G. Feng, S. A. Tang, C. Wu and Y. L. Shen, A unified approach to the weighted Grötzsch and Nitsch problems for mappings of finite distortion, Sci. China Math. 59 (2016), 673–686.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Ge]
    F. Gehring, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), 99–113.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Gr]
    H. Grötzsch, Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Sates, Ber.Verh. Sächs. Akad.Wiss. Leipzig 80 (1928), 503–507.zbMATHGoogle Scholar
  8. [GM]
    V. Gutlyanskii and O. Martio, Rotation estimates and spirals, Conform. Geom. Dyn. 5 (2001), 6–20.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [IM]
    T. Iwaniec and G. J. Martin, Geometric Function Theory and Non-linear Analysis, Oxford University Press, Oxford, 2001.zbMATHGoogle Scholar
  10. [IMO]
    T. Iwaniec, G. J. Martin and J. Onninen, On minimiser of L P-mean distortion, Comput. Methods Funct. Theory 14 (2014), 399–416.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Jo]
    F. John, Rotation and strain, Comm. Pure. Math. 14 (1961), 391–413.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Ka]
    D. Kalaj, Deformations of annuli on Riemann surfaces with smallest mean distortion, Arxiv: 1005–5269.Google Scholar
  13. [Ma]
    G. J. Martin, The Teichmüller problem for mean distortion, Ann. Acad. Sci. Fenn. A I Math. 34 (2009), 233–247.zbMATHGoogle Scholar
  14. [MM]
    G. J. Martin and M. Mckubre-Jordens, Deformation with smallest weighted L P average distortion and Nitsche-type phenomena, J. London Math. Soc. 85 (2012), 282–300.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySuzhouP.R. China
  2. 2.College of Mathmatics and InformationChina West Normal UniversityNanchongP.R. China
  3. 3.Department of MathematicsSoochow UniversitySuzhouP.R. China

Personalised recommendations