Advertisement

On Lp-improving for averages associated to mixed homogeneous polynomial hypersurfaces in ℝ3

  • Spyridon DendrinosEmail author
  • Eugen Zimmermann
Article

Abstract

We establish Lp-Lq estimates for averaging operators associated to mixed homogeneous polynomial hypersurfaces in ℝ3. These are described in terms of the mixed homogeneity and the order of vanishing of the polynomial hypersurface and its Gaussian curvature transversally to their zero sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Dendrinos and B. Stovall, Uniform bounds for convolution and restricted X-ray transforms along degenerate curves, J. Funct. Anal. 268 (2015), 585–633.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Y. Domar, On the Banach algebra A(G) for smooth sets Γ ⊂ ℝ n, Comment. Math. Helv. 52 (1977), 357–371.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. W. Drury and B. P. Marshall, Fourier restriction theorems for curves with affine and Euclidean arclengths, Math. Proc. Camb. Phil. Soc. 97 (1985), 111–125.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E. Ferreyra, T. Godoy and M. Urciuolo, Boundedness properties of some convolution operators with singular measures, Math. Z. 225 (1997), 611–624.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Ferreyra, T. Godoy and M. Urciuolo, L p - L q estimates for convolution operators with n-dimensional singular measures, J. Fourier Anal. Appl. 3 (1997), 475–484.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Ferreyra, T. Godoy and M. Urciuolo, Endpoint bounds for convolution operators with singular measures, Colloq. Math. 76 (1998), 35–47.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    E. Ferreyra, T. Godoy and M. Urciuolo, The type set for homogeneous singular measures on ℝ 3 of polynomial type, Colloq. Math. 106 (2006), no. 2, 161–175.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. T. Gressman, Uniform sublevel radon-like inequalities, J. Geom. Anal. 23 (2013), 611–652.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    I. A. Ikromov and D. Müller, On adapted coordinate systems, Trans. Amer. Math. Soc. 363 (2011), 2821–2848.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Iosevich, E. Sawyer and A. Seeger, On averaging operators associated with convex hypersurfaces of finite type, J. Anal. Math. 79 (1999), 159–187.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    W. Littman, L p - L q estimates for singular integral operators arising from hyperbolic equations, in Partial Differential Equations. Proceedings of Symposia in Pure Mathematics. Vol. XXIII, American Mathematical Soceity, Providence, RI, 1973, pp. 479–481.Google Scholar
  12. [12]
    D. M. Oberlin, Convolution with measures on hypersurfaces, Math. Proc. Camb. Phil. Soc. 129 (2000), 517–526.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Pramanik, Convergence of two-dimensional weighted integrals, Trans. Amer. Math. Soc. 354 (2001), 1651–1665.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. M. Stein, L p boundedness of certain convolution operators, Bull. Amer. Math. Soc. 77 (1971), 404–405.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.zbMATHGoogle Scholar
  16. [16]
    R. Strichartz, Convolutions with kernels having singularities on the sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Urciuolo, Convolution operators with homogeneous singular measures on ℝ 3 of polynomial type. The remainder case, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), Article 89.MathSciNetzbMATHGoogle Scholar
  18. [18]
    E. Zimmermann, On L p-estimates for maximal averages over hypersurfaces not satisfying the transversality condition, PhD thesis, University of Kiel, 2014.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations