Advertisement

Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 73–100 | Cite as

Regularity and modulus of continuity of space-filling curves

  • Aapo Kauranen
  • Pekka Koskela
  • Aleksandra ZapadinskayaEmail author
Article
  • 24 Downloads

Abstract

We study critical regularity assumptions on space-filling curves that possess certain modulus of continuity. The bounds we obtain are essentially sharp, as demonstrated by an example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. M. Buckley, Space-filling curves and related functions, Irish Math. Soc. Bull. 36 (1996), 9–18.MathSciNetzbMATHGoogle Scholar
  2. [2]
    K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.zbMATHGoogle Scholar
  3. [3]
    P. Hajłasz and J. T. Tyson, Sobolev Peano cubes, Michigan Math. J. 56 (2008), 687–702.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Hencl, P. Koskela, and T. Nieminen, Dimension gap under conformal mappings, Adv. Math. 230 (2012), 1423–1441.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. D. Howroyd, On the theory of Hausdorff measures in metric spaces, Ph.D. thesis, University College London, 1994.Google Scholar
  6. [6]
    S. Jaffard and S. Nicolay, Pointwise smoothness of space-filling functions, Appl. Comput. Harmon. Anal. 26 (2009), 181–199.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Kauranen and P. Koskela, Boundary blow-up under Sobolev mappings, Anal. PDE 7, 8 (2014), 1839–1850.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Koskela, J. Malý, and T. Zürcher, Luzins condition (N) and Sobolev mappings, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 23 (2012), 455–465.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Koskela and T. Nieminen, Quasiconformal removability and the quasihyperbolic metric, Indiana Univ. Math. J. 54 (2005), 143–151.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Koskela and S. Rohde, Hausdorff dimension and mean porosity, Math. Ann. 309 (1997), 593–609.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Koskela and A. Zapadinskaya, Dimension gap under Sobolev mappings, Adv. Math. 274 (2015), 385–403.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Malý and O. Martio, Lusins condition (N) and mappings of the class W1,n, J. Reine Angew. Math. 458 (1995), 19–36.MathSciNetzbMATHGoogle Scholar
  13. [13]
    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.CrossRefzbMATHGoogle Scholar
  14. [14]
    T. Nieminen, Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math. 31 (2006), 143–172.MathSciNetzbMATHGoogle Scholar
  15. [15]
    G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36, (1890), 157–160.Google Scholar
  16. [16]
    H. Sagan, Space-Filling Curves, Springer-Verlag, New York, 1994.CrossRefzbMATHGoogle Scholar
  17. [17]
    E. V. Shchepin, On fractal Peano curves, Tr. Mat. Inst. Steklova 247, Geom. Topol. i Teor. Mnozh. (2004), 294–303.Google Scholar
  18. [18]
    K. Wildrick and T. Zürcher, Peano cubes with derivatives in a Lorentz space, Illinois J. Math. 53 (2009), 365–378.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    K. Wildrick and T. Zürcher, Space filling with metric measure spaces, Math. Z. 270 (2012), 103–131.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Aapo Kauranen
    • 1
  • Pekka Koskela
    • 2
  • Aleksandra Zapadinskaya
    • 3
    Email author
  1. 1.Department of MathematicsAutonomous University of BarcelonaBellaterra (Barcelona)Spain
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of MathematicsUniversity of PisaPisaItaly

Personalised recommendations