# Perturbation of chains of de Branges spaces

- 13 Downloads

## Abstract

We investigate the structure of the set of de Branges spaces of entire functions which are contained in a space *L*^{2}(*μ*). Thereby, we follow a perturbation approach. The main result is a growth dependent stability theorem. Namely, assume that measures *μ*_{1} and *μ*_{2} are close to each other in a sense quantified relative to a proximate order. Consider the sections of corresponding chains of de Branges spaces C_{1} and C_{2} which consist of those spaces whose elements have finite (possibly zero) type with respect to the given proximate order. Then either these sections coincide or one is smaller than the other but its complement consists of only a (finite or infinite) sequence of spaces.

- (1)
the measures

*μ*_{1}and*μ*_{2}differ in essence only on a compact set; then stability of whole chains rather than sections can be shown - (2)
the linear space of all polynomials is dense in

*L*^{2}(*μ*_{2}); then conditions for density of polynomials in the space*L*^{2}(*μ*_{2}) are obtained.

## Preview

Unable to display preview. Download preview PDF.

## References

- [Bar06]A. D. Baranov,
*Completeness and Riesz bases of reproducing kernels in model subspaces*, Int. Math. Res. Not. (2006), Art. ID 81530, 34.Google Scholar - [BBH07]A. D. Baranov, A. Borichev, and V. Havin,
*Majorants of meromorphic functions with fixed poles*, Indiana Univ. Math. J.**56**(2007), 1595–1628.MathSciNetCrossRefMATHGoogle Scholar - [BD95]C. Berg and A. J. Duran,
*The index of determinacy for measures and the l2-norm of orthonormal polynomials*, Trans. Amer. Math. Soc.**347**(1995), 2795–2811.MathSciNetMATHGoogle Scholar - [BP07]C. Berg and H. L. Pedersen,
*Logarithmic order and type of indeterminate moment problems*, Difference Equations, Special Functions and Orthogonal Polynomials (with an appendix by Walter Hayman), World Sci. Publ., Hackensack, NJ, 2007, pp. 51–79.CrossRefGoogle Scholar - [BS11]A. Borichev and M. Sodin,
*Weighted exponential approximation and non-classical orthogonal spectral measures*, Adv. Math.**226**(2011), 2503–2545.MathSciNetCrossRefMATHGoogle Scholar - [Bra59a]L. de Branges,
*Some Hilbert Spaces of Entire Functions*, Proc. Amer. Math. Soc.**10**(1959), 840–846.MathSciNetCrossRefMATHGoogle Scholar - [Bra59b]L. de Branges,
*Some mean squares of entire functions*, Proc. Amer. Math. Soc.**10**(1959), 833–839.MathSciNetCrossRefMATHGoogle Scholar - [Bra61]L. de Branges,
*Some Hilbert spaces of entire functions. II*, Trans. Amer. Math. Soc.**99**(1961), 118–152.MathSciNetCrossRefMATHGoogle Scholar - [Bra68]L. de Branges,
*Hilbert Spaces of Entire Functions*, Prentice-Hall Inc., Englewood Cliffs, NJ, 1968.MATHGoogle Scholar - [Dym70]H. Dym.
*An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type*, Advances in Math.**5**(1970), 395–471.MathSciNetCrossRefMATHGoogle Scholar - [DK78a]H. Dym and N. Kravitsky,
*On recovering the mass distribution of a string from its spectral function*, Topics in Functional Analysis (Essays Dedicated to M. G. Kreĭn on the Occasion of his 70th Birthday). Vol. 3, Academic Press, New York-London, 1978, pp. 45–90.Google Scholar - [DK78b]H. Dym and N. Kravitsky,
*On the inverse spectral problem for the string equation*, Integral Equations Operator Theory**1**(1978), 270–277.MathSciNetCrossRefMATHGoogle Scholar - [DM70]H. Dym and H. P. McKean,
*Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes*, Illinois J. Math.**14**(1970), 299–343.MathSciNetMATHGoogle Scholar - [Fre69]G. Freud,
*Orthogonale Polynome*, Birkhäuser Verlag, Basel-Stuttgart, 1969.CrossRefMATHGoogle Scholar - [GL51]I. M. Gel'fand and B. M. Levitan,
*On the determination of a differential equation from its spectral function*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**15**(1951), 309–360.MathSciNetMATHGoogle Scholar - [Gol62]A. A. Gol'dberg,
*The integral over a semi-additive measure and its application to the theory of entire functions. II*, Mat. Sb. (N.S.)**61**(1962), 334–349.MathSciNetMATHGoogle Scholar - [HM03a]V. Havin and J. Mashreghi,
*Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function*, Canad. J. Math.**55**(2003), 1231–1263.MathSciNetCrossRefMATHGoogle Scholar - [HM03b]V. Havin and J. Mashreghi,
*Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function*, Canad. J. Math.**55**(2003), 1264–1301.MathSciNetCrossRefMATHGoogle Scholar - [KW05a]M. Kaltenbäck and H. Woracek,
*de Branges spaces of exponential type: general theory of growth*, Acta Sci. Math. (Szeged)**71**(2005), 231–284.MathSciNetMATHGoogle Scholar - [KW05b]M. Kaltenbäck and H. Woracek,
*Hermite-Biehler functions with zeros close to the imaginary axis*, Proc. Amer. Math. Soc.**133**(2005), 245–255 (electronic).MathSciNetCrossRefMATHGoogle Scholar - [LW13a]M. Langer and H. Woracek,
*Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of nonpositive type*, Oper. Matrices**7**(2013), 477–555.MathSciNetCrossRefMATHGoogle Scholar - [LW13b]M. Langer and H. Woracek,
*The exponential type of the fundamental solution of an indefinite Hamiltonian system*, Complex Anal. Oper. Theory**7**(2013), 285–312.MathSciNetCrossRefMATHGoogle Scholar - [LG86]P. Lelong and L. Gruman,
*Entire Functions of Several Complex Variables*, Springer-Verlag, Berlin, 1986.CrossRefMATHGoogle Scholar - [Lev80]B. Ja. Levin,
*Distribution of Zeros of Entire Functions*, American Mathematical Society, Providence, RI, 1980.Google Scholar - [OS02]J. Ortega-Cerdà and K. Seip,
*Fourier frames*, Ann. of Math. (2)**155**(2002), 789–806.MathSciNetCrossRefMATHGoogle Scholar - [Pit72]L. D. Pitt,
*On problems of trigonometrical approximation from the theory of stationary Gaussian processes*, J. Multivariate Anal.**2**(1972), 145–161.MathSciNetCrossRefGoogle Scholar - [Pol13]A. Poltoratski,
*A problem on completeness of exponentials*, Ann. of Math. (2)**178**(2013), 983–1016.MathSciNetCrossRefMATHGoogle Scholar - [Rem02]C. Remling.
*Schrödinger operators and de Branges spaces*, J. Funct. Anal.**196**(2002), 323–394.MathSciNetCrossRefMATHGoogle Scholar - [Rub96]L. A. Rubel,
*Entire and Meromorphic Functions*, Springer-Verlag, New York, 1996.CrossRefMATHGoogle Scholar - [Win00]H. Winkler,
*Small perturbations of canonical systems*, Integral Equations Operator Theory**38**(2000), 222–250.MathSciNetCrossRefMATHGoogle Scholar - [Win95]H. Winkler,
*The inverse spectral problem for canonical systems*, Integral Equations Operator Theory**22**(1995), 360–374.MathSciNetCrossRefMATHGoogle Scholar - [Wor14]H. Woracek,
*Reproducing kernel almost Pontryagin spaces*40 pp., ASC Report 14. https://doi.org/www.asc.tuwien.ac.at/preprint/2014/asc14x2014.pdf. Vienna University of Technology, 2014.MATHGoogle Scholar - [Yud00]P. Yuditskii,
*Analytic perturbation preserves determinacy of infinite index*, Math. Scand.**86**(2000), 288–292.MathSciNetCrossRefMATHGoogle Scholar