# Perturbation of chains of de Branges spaces

- 20 Downloads

## Abstract

We investigate the structure of the set of de Branges spaces of entire functions which are contained in a space *L*^{2}(*μ*). Thereby, we follow a perturbation approach. The main result is a growth dependent stability theorem. Namely, assume that measures *μ*_{1} and *μ*_{2} are close to each other in a sense quantified relative to a proximate order. Consider the sections of corresponding chains of de Branges spaces C_{1} and C_{2} which consist of those spaces whose elements have finite (possibly zero) type with respect to the given proximate order. Then either these sections coincide or one is smaller than the other but its complement consists of only a (finite or infinite) sequence of spaces.

- (1)
the measures

*μ*_{1}and*μ*_{2}differ in essence only on a compact set; then stability of whole chains rather than sections can be shown - (2)
the linear space of all polynomials is dense in

*L*^{2}(*μ*_{2}); then conditions for density of polynomials in the space*L*^{2}(*μ*_{2}) are obtained.

## Preview

Unable to display preview. Download preview PDF.

## References

- [Bar06]A. D. Baranov,
*Completeness and Riesz bases of reproducing kernels in model subspaces*, Int. Math. Res. Not. (2006), Art. ID 81530, 34.Google Scholar - [BBH07]A. D. Baranov, A. Borichev, and V. Havin,
*Majorants of meromorphic functions with fixed poles*, Indiana Univ. Math. J.**56**(2007), 1595–1628.MathSciNetCrossRefzbMATHGoogle Scholar - [BD95]C. Berg and A. J. Duran,
*The index of determinacy for measures and the l2-norm of orthonormal polynomials*, Trans. Amer. Math. Soc.**347**(1995), 2795–2811.MathSciNetzbMATHGoogle Scholar - [BP07]C. Berg and H. L. Pedersen,
*Logarithmic order and type of indeterminate moment problems*, Difference Equations, Special Functions and Orthogonal Polynomials (with an appendix by Walter Hayman), World Sci. Publ., Hackensack, NJ, 2007, pp. 51–79.CrossRefGoogle Scholar - [BS11]A. Borichev and M. Sodin,
*Weighted exponential approximation and non-classical orthogonal spectral measures*, Adv. Math.**226**(2011), 2503–2545.MathSciNetCrossRefzbMATHGoogle Scholar - [Bra59a]L. de Branges,
*Some Hilbert Spaces of Entire Functions*, Proc. Amer. Math. Soc.**10**(1959), 840–846.MathSciNetCrossRefzbMATHGoogle Scholar - [Bra59b]L. de Branges,
*Some mean squares of entire functions*, Proc. Amer. Math. Soc.**10**(1959), 833–839.MathSciNetCrossRefzbMATHGoogle Scholar - [Bra61]L. de Branges,
*Some Hilbert spaces of entire functions. II*, Trans. Amer. Math. Soc.**99**(1961), 118–152.MathSciNetCrossRefzbMATHGoogle Scholar - [Bra68]L. de Branges,
*Hilbert Spaces of Entire Functions*, Prentice-Hall Inc., Englewood Cliffs, NJ, 1968.zbMATHGoogle Scholar - [Dym70]H. Dym.
*An introduction to de Branges spaces of entire functions with applications to differential equations of the Sturm-Liouville type*, Advances in Math.**5**(1970), 395–471.MathSciNetCrossRefzbMATHGoogle Scholar - [DK78a]H. Dym and N. Kravitsky,
*On recovering the mass distribution of a string from its spectral function*, Topics in Functional Analysis (Essays Dedicated to M. G. Kreĭn on the Occasion of his 70th Birthday). Vol. 3, Academic Press, New York-London, 1978, pp. 45–90.Google Scholar - [DK78b]H. Dym and N. Kravitsky,
*On the inverse spectral problem for the string equation*, Integral Equations Operator Theory**1**(1978), 270–277.MathSciNetCrossRefzbMATHGoogle Scholar - [DM70]H. Dym and H. P. McKean,
*Application of de Branges spaces of integral functions to the prediction of stationary Gaussian processes*, Illinois J. Math.**14**(1970), 299–343.MathSciNetzbMATHGoogle Scholar - [Fre69]G. Freud,
*Orthogonale Polynome*, Birkhäuser Verlag, Basel-Stuttgart, 1969.CrossRefzbMATHGoogle Scholar - [GL51]I. M. Gel'fand and B. M. Levitan,
*On the determination of a differential equation from its spectral function*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**15**(1951), 309–360.MathSciNetzbMATHGoogle Scholar - [Gol62]A. A. Gol'dberg,
*The integral over a semi-additive measure and its application to the theory of entire functions. II*, Mat. Sb. (N.S.)**61**(1962), 334–349.MathSciNetzbMATHGoogle Scholar - [HM03a]V. Havin and J. Mashreghi,
*Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function*, Canad. J. Math.**55**(2003), 1231–1263.MathSciNetCrossRefzbMATHGoogle Scholar - [HM03b]V. Havin and J. Mashreghi,
*Admissible majorants for model subspaces of H2. II. Fast winding of the generating inner function*, Canad. J. Math.**55**(2003), 1264–1301.MathSciNetCrossRefzbMATHGoogle Scholar - [KW05a]M. Kaltenbäck and H. Woracek,
*de Branges spaces of exponential type: general theory of growth*, Acta Sci. Math. (Szeged)**71**(2005), 231–284.MathSciNetzbMATHGoogle Scholar - [KW05b]M. Kaltenbäck and H. Woracek,
*Hermite-Biehler functions with zeros close to the imaginary axis*, Proc. Amer. Math. Soc.**133**(2005), 245–255 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar - [LW13a]M. Langer and H. Woracek,
*Indefinite Hamiltonian systems whose Titchmarsh–Weyl coefficients have no finite generalized poles of nonpositive type*, Oper. Matrices**7**(2013), 477–555.MathSciNetCrossRefzbMATHGoogle Scholar - [LW13b]M. Langer and H. Woracek,
*The exponential type of the fundamental solution of an indefinite Hamiltonian system*, Complex Anal. Oper. Theory**7**(2013), 285–312.MathSciNetCrossRefzbMATHGoogle Scholar - [LG86]P. Lelong and L. Gruman,
*Entire Functions of Several Complex Variables*, Springer-Verlag, Berlin, 1986.CrossRefzbMATHGoogle Scholar - [Lev80]B. Ja. Levin,
*Distribution of Zeros of Entire Functions*, American Mathematical Society, Providence, RI, 1980.Google Scholar - [OS02]J. Ortega-Cerdà and K. Seip,
*Fourier frames*, Ann. of Math. (2)**155**(2002), 789–806.MathSciNetCrossRefzbMATHGoogle Scholar - [Pit72]L. D. Pitt,
*On problems of trigonometrical approximation from the theory of stationary Gaussian processes*, J. Multivariate Anal.**2**(1972), 145–161.MathSciNetCrossRefGoogle Scholar - [Pol13]A. Poltoratski,
*A problem on completeness of exponentials*, Ann. of Math. (2)**178**(2013), 983–1016.MathSciNetCrossRefzbMATHGoogle Scholar - [Rem02]C. Remling.
*Schrödinger operators and de Branges spaces*, J. Funct. Anal.**196**(2002), 323–394.MathSciNetCrossRefzbMATHGoogle Scholar - [Rub96]L. A. Rubel,
*Entire and Meromorphic Functions*, Springer-Verlag, New York, 1996.CrossRefzbMATHGoogle Scholar - [Win00]H. Winkler,
*Small perturbations of canonical systems*, Integral Equations Operator Theory**38**(2000), 222–250.MathSciNetCrossRefzbMATHGoogle Scholar - [Win95]H. Winkler,
*The inverse spectral problem for canonical systems*, Integral Equations Operator Theory**22**(1995), 360–374.MathSciNetCrossRefzbMATHGoogle Scholar - [Wor14]H. Woracek,
*Reproducing kernel almost Pontryagin spaces*40 pp., ASC Report 14. https://doi.org/www.asc.tuwien.ac.at/preprint/2014/asc14x2014.pdf. Vienna University of Technology, 2014.zbMATHGoogle Scholar - [Yud00]P. Yuditskii,
*Analytic perturbation preserves determinacy of infinite index*, Math. Scand.**86**(2000), 288–292.MathSciNetCrossRefzbMATHGoogle Scholar