Advertisement

Journal d'Analyse Mathématique

, Volume 135, Issue 1, pp 1–35 | Cite as

Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions

  • Idriss Boutaayamou
  • Genni Fragnelli
  • Lahcen Maniar
Article

Abstract

We consider a parabolic problem with degeneracy in the interior of the spatial domain and Neumann boundary conditions. In particular, we focus on the well-posedness of the problem and on Carleman estimates for the associated adjoint problem. The novelty of the present paper is that, for the first time, the problem is considered as one with an interior degeneracy and Neumann boundary conditions, so no previous result can be adapted to this situation. As a consequence, new observability inequalities are established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj, and L. Maniar, Null controllability of degenerate parabolic cascade systems, Port. Math. 68 (2011), 345–367.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj, and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory 2 (2013), 441–459.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ. 6 (2006), 161–204.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Second edition. Birkhäuser Boston, Inc., Boston, MA, 2007.CrossRefzbMATHGoogle Scholar
  5. [5]
    I. Boutaayamou, G. Fragnelli, and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Diff. Equ. 2014 (2014), 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Brezis, Analyse fonctionnelle, Collection of Applied Mathematics for the Master’s Degree, Masson, Paris, 1983.zbMATHGoogle Scholar
  7. [7]
    P. Cannarsa and G. Fragnelli, Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations 2006 (2006), 1–20.MathSciNetzbMATHGoogle Scholar
  8. [8]
    P. Cannarsa, G. Fragnelli, and D. Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media 2 (2007), 693–713.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Cannarsa, G. Fragnelli, and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ. 8 (2008), 583–616.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Cannarsa, G. Fragnelli, and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: controllability and observability, IFIP Int. Fed. Inf. Process. 202 (2006), 163–173, Springer, New York.MathSciNetzbMATHGoogle Scholar
  11. [11]
    P. Cannarsa, G. Fragnelli, and J. Vancostenoble, Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl. 320 (2006), 804–818.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, The Clarendon Press, Oxford University Press, New York, 1998.zbMATHGoogle Scholar
  13. [13]
    L. Escauriaza, C.E. Kenig, G. Ponce, and L. Vega, Unique continuation for Schrödinger evolutions, with applications to profiles of concentration and traveling waves, Comm. Math. Phys. 305 (2011), 487–512.zbMATHGoogle Scholar
  14. [14]
    E. Fernández-Cara, M. González-Burgos, S. Guerrero, and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case, ESAIM Control Optim. Calc. Var. 12 (2006), 442–465.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 583–616.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. Flores and L. De Teresa, Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris 348 (2010), 391–396.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Fragnelli, Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 687–701.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: wellposedness and Carleman estimates, J. Differential Equations 260 (2016), 1314–1371.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Advances in Nonlinear Analysis 2 (2013), 339–378.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer.Math. Soc., 242 (2016), no. 1146, Corrigendum, to appear.Google Scholar
  21. [21]
    G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein, and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differential Equations 2012 (2012), 1–30.zbMATHGoogle Scholar
  22. [22]
    J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var. 18 (2012), 712–747.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann. 344 (2009), 161–184.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J. Vancostenoble and E. Zuazua, Hardy inequalities, observability, and control for the wave and Schrödinger equations with singular potentials, SIAM J. Math. Anal. 41 (2009), 1508–1532.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2018

Authors and Affiliations

  • Idriss Boutaayamou
    • 1
  • Genni Fragnelli
    • 2
  • Lahcen Maniar
    • 3
  1. 1.Département de Mathématiques, Informatiques et Gestion, Faculté Polydisciplinaire de OuarzazateUniversité Ibn ZohrOuarzazateMorocco
  2. 2.Dipartimento di MatematicaUniversità di Bari “Aldo Moro”BariItaly
  3. 3.Département de Mathématiques, Faculté des Sciences Semlalia, LMDP, UMMISCO (IRD-UPMC)Université Cadi AyyadMarrakechMorocco

Personalised recommendations