# On the evolution of continued fractions in a fixed quadratic field

- 19 Downloads

## Abstract

We prove that the statistics of the period of the continued fraction expansion of certain sequences of quadratic irrationals from a fixed quadratic field approach the ‘normal’ statistics given by the Gauss-Kuzmin measure. As a byproduct, the growth rate of the period is analyzed and, for example, it is shown that for a fixed integer *k* and a quadratic irrational *α*, the length of the period of the continued fraction expansion of *k*^{ n }*α* equals *ck*^{ n } + *o*(*k*^{15n/16}) for some positive constant *c*. This improves results of Cohn, Lagarias, and Grisel, and settles a conjecture of Hickerson. The results are derived from the main theorem of the paper, which establishes an equidistribution result regarding single periodic geodesics along certain paths in the Hecke graph. The results are effective and give rates of convergence and the main tools are spectral gap (effective decay of matrix coefficients) and dynamical analysis on *S*-arithmetic homogeneous spaces.

## Preview

Unable to display preview. Download preview PDF.

## References

- [Arn07]V. I. Arnol′d,
*Continued fractions of square roots of rational numbers and their statistics*, Uspekhi Mat. Nauk**62**(2007), 3–14.MathSciNetCrossRefGoogle Scholar - [Arn08]V. I. Arnol′d,
*Statistics of the periods of continued fractions for quadratic irrationals*, Izv. Ross. Akad. Nauk Ser. Mat. 72, 3–38.Google Scholar - [Art82]E. Artin,
*Collected Papers*, Springer-Verlag, New York, 1982.MATHGoogle Scholar - [BL05]Y. Bugeaud and F. Luca,
*On the period of the continued fraction expansion of*\(\sqrt {{2^{2n + 1}} + 1} \), Indag. Math. (N. S.)**16**(2005), 21–35.MathSciNetCrossRefMATHGoogle Scholar - [BO07]Y. Benoist and H. Oh,
*Equidistribution of rational matrices in their conjugacy classes*, Geom. Funct. Anal.**17**(2007), 1–32.MathSciNetCrossRefMATHGoogle Scholar - [Coh77]J. H. E. Cohn,
*The length of the period of the simple continued fraction of d*^{1/2}, Pacific J. Math.**71**(1977), 21–32.MathSciNetCrossRefMATHGoogle Scholar - [CZ04]P. Corvaja and U. Zannier,
*On the rational approximations to the powers of an algebraic number: solution of two problems of Mahler and Mendès France*, Acta Math.**193**(2004), 175–191.MathSciNetCrossRefMATHGoogle Scholar - [Dir56]P. G. L. Dirichlet,
*Une propriété des formes quadratiques à déterminant positif*, J. Math. Pures Appl. (1856), 76–79.Google Scholar - [EW11]M. Einsiedler and T. Ward,
*Ergodic Theory with a View Towards Number Theory*, Springer-Verlag London Ltd., London, 2011.MATHGoogle Scholar - [FK10]É. Fouvry and J. Klüners,
*On the negative Pell equation*, Ann. of Math. (2)**172**(2010), 2035–2104.MathSciNetCrossRefMATHGoogle Scholar - [Gol02]E. P. Golubeva,
*On the class numbers of indefinite binary quadratic forms of discriminant dp*^{2}, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**286**(2002), no. Anal. Teor. Chisel i Teor. Funkts.**18**, 40–47, 227–228.Google Scholar - [Gri98]G. Grisel,
*Length of continued fractions in principal quadratic fields*, Acta Arith.**85**(1998), 35–49.MathSciNetCrossRefMATHGoogle Scholar - [Hic73]D. R. Hickerson,
*Length of period simple continued fraction expansion of √d*, Pacific J. Math.**46**(1973), 429–432.MathSciNetCrossRefMATHGoogle Scholar - [Kei]M. Keith,
*On the continued fraction expansion of*\(\sqrt {{2^{2n + 1}}} \), Unpublished, available on http://www.numbertheory.org/pdfs/period.pdf.Google Scholar - [Kim03]H. H. Kim,
*Functoriality for the exterior square of GL*_{4}*and the symmetric fourth of GL*_{2}, J. Amer. Math. Soc.**16**(2003), 139–183.MathSciNetCrossRefGoogle Scholar - [Lag80]J. C. Lagarias,
*On the computational complexity of determining the solvability or unsolvability of the equation X*^{2}−*DY*^{2}= −1, Trans. Amer. Math. Soc.**260**(1980), 485–508.MathSciNetMATHGoogle Scholar - [Ler10]E. Y. Lerner,
*About statistics of periods of continued fractions of quadratic irrationalities*, Funct. Anal. Other Math.**3**(2010), 75–83.MathSciNetCrossRefMATHGoogle Scholar - [Mar04]G. A. Margulis,
*On Some Aspects of the Theory of Anosov Systems*, Springer-Verlag, Berlin, 2004.CrossRefMATHGoogle Scholar - [McM09]C. T. McMullen,
*Uniformly Diophantine numbers in a fixed real quadratic field*, Compos. Math.**145**(2009), 827–844.MathSciNetCrossRefMATHGoogle Scholar - [MF93]M. Mendès-France,
*Remarks and problems on finite and periodic continued fractions*, Enseign. Math. (2)**39**(1993), 249–257.MathSciNetMATHGoogle Scholar - [Pol86]M. Pollicott,
*Distribution of closed geodesics on the modular surface and quadratic irrationals*, Bull. Soc. Math. France**114**(1986), 431–446.MathSciNetCrossRefMATHGoogle Scholar - [PR94]V. Platonov and A. Rapinchuk,
*Algebraic Groups and Number Theory*, Academic Press Inc., Boston, MA, 1994.MATHGoogle Scholar - [RS92]A. M. Rockett and P. Szüsz,
*Continued Fractions*, World Scientific Publishing Co. Inc., River Edge, NJ, 1992.CrossRefMATHGoogle Scholar - [Ser85]C. Series,
*The modular surface and continued fractions*, J. London Math. Soc. (2)**31**(1985), 69–80.MathSciNetCrossRefMATHGoogle Scholar - [Ven10]A. Venkatesh,
*Sparse equidistribution problems, period bounds and subconvexity*, Ann. of Math. (2)**172**(2010), 989–1094.MathSciNetCrossRefMATHGoogle Scholar