Journal d'Analyse Mathématique

, Volume 134, Issue 1, pp 201–235 | Cite as

Random dynamics of transcendental functions



This work concerns random dynamics of hyperbolic entire and meromorphic functions of finite order whose derivative satisfies some growth condition at ∞. This class contains most of the classical families of transcendental functions and goes much beyond. Based on uniform versions of Nevanlinna’s value distribution theory, we first build a thermodynamical formalism which, in particular, produces unique geometric and fiberwise invariant Gibbs states. Moreover, spectral gap property for the associated transfer operator along with exponential decay of correlations and a central limit theorem are shown. This part relies on our construction of new positive invariant cones that are adapted to the setting of unbounded phase spaces. This setting rules out the use of Hilbert’s metric along with the usual contraction principle. However, these cones allow us to apply a contraction argument stemming from Bowen’s initial approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ludwig Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.CrossRefMATHGoogle Scholar
  2. [2]
    Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227.MathSciNetMATHGoogle Scholar
  3. [3]
    Rufus Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer-Verlag, Berlin, 1975.CrossRefMATHGoogle Scholar
  4. [4]
    William Cherry and Zhuan Ye, Nevanlinna’s Theory of Value Distribution, Springer-Verlag, Berlin, 2001.CrossRefMATHGoogle Scholar
  5. [5]
    Hans Crauel, Random probability Measures on Polish Spaces, Taylor & Francis, London, 2002.MATHGoogle Scholar
  6. [6]
    Manfred Denker, Yuri Kifer, and Manuel Stadlbauer, Thermodynamic formalism for random countable Markov shifts Discrete Contin. Dyn. Syst. 22 (2008), 131–164.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Alexandre Eremenko, Ahlfors’ contribution to the theory of meromorphic functions, in Lectures in Memory of Lars Ahlfors (Haifa, 1996), volume 14 of Israel Math. Conf. Proc., Bar-Ilan Univ., Ramat Gan, 2000, pp. 41–63.MATHGoogle Scholar
  8. [8]
    John Erik Fornæss and Nessim Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11 (1991), 687–708.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Anatoly A. Goldberg and Iossif V. Ostrovskii, Value Distribution of Meromorphic Functions, American Mathematical Society, Providence, RI, 2008.CrossRefMATHGoogle Scholar
  10. [10]
    Mikhail Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741.MathSciNetMATHGoogle Scholar
  11. [11]
    Hubert Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc. 118 (1993), 627–634.MathSciNetMATHGoogle Scholar
  12. [12]
    Einar Hille, Analytic Function Theory, Vol. I, II American Mathematical Society, Providence, RI, 2000.Google Scholar
  13. [13]
    C. T. Ionescu Tulcea and G. Marinescu. Théorie ergodique pour des classes d’opérations non complétement continues, Ann. of Math. (2) 52 (1950), 52:140–147.MATHGoogle Scholar
  14. [14]
    Yuri Kifer, Thermodynamic formalism for random transformations revisited, Stochastics and Dynam. 8 (2008), 77–102.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Yuri Kifer and Pei-Dong Liu, Random dynamics, in Handbook of Dynamical Systems, Vol. 1B, Elsevier,, Amsterdam, 2006, pp. 379–499.MATHGoogle Scholar
  16. [16]
    Carlangelo Liverani, Decay of correlations, Ann. of Math. (2) 142 (1995), 239–301.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Volker Mayer, Bartlomiej Skorulski, and Mariusz Urbański, Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry, Springer, Heidelberg, 2011.CrossRefMATHGoogle Scholar
  18. [18]
    Volker Mayer, Bartlomiej Skorulski, and Mariusz Urbański, Regularity and irregularity of fiber dimensions of non-autonomous dynamical systems, Ann. Acad. Sci. Fenn. Math. 38 (2013), 489–514.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Volker Mayer and Mariusz Urbański, Geometric thermodynamic formalism and real analyticity for meromorphic functions of finite order, Ergodic Theory Dynam. Systems 28 (2008), 915–946.MathSciNetMATHGoogle Scholar
  20. [20]
    Volker Mayer and Mariusz Urbański Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order, Mem. Amer. Math. Soc. 203 (2010), no. 954.Google Scholar
  21. [21]
    Rolf Nevanlinna, Analytic Functions, Springer-Verlag, New York, 1970.CrossRefMATHGoogle Scholar
  22. [22]
    Rolf Nevanlinna, Eindeutige analytische Funktionen, Springer-Verlag, Berlin, 1974.MATHGoogle Scholar
  23. [23]
    Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.CrossRefMATHGoogle Scholar
  24. [24]
    Mario Roy and Mariusz Urbański, Random graph directed Markov systems, Discrete Contin. Dyn. Syst. 30 (2011), 261–298.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    David Ruelle, Thermodynamic Formalism. TheMathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley Publishing Co., Reading, Mass., 1978.MATHGoogle Scholar
  26. [26]
    [26] Hans Henrik Rugh, On the dimension of conformal repellers, randomness and parameter dependency, Ann. of Math. (2) 168 (2008), 695–748.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    [27] Hans Henrik Rugh, Cones and gauges in complex spaces: spectral gaps and complex Perron-Frobenius theory, Ann. of Math. (2) 171 (2010), 1707–1752.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Manuel Stadlbauer, On random topological Markov chains with big images and preimages, Stoch. Dyn. 10 (010), 77–95.Google Scholar
  29. [29]
    Hiroki Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ. 37 (1997), 717–733.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Hiroki Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc. (3) 102 (2011), 50–112.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2018

Authors and Affiliations

  1. 1.Université de Lille IVilleneuve d’Ascq CedexFrance
  2. 2.Department of MathematicsUniversity of North TexasDentonUSA

Personalised recommendations