# A structure theorem for multiplicative functions over the Gaussian integers and applications

Article

First Online:

Received:

Accepted:

- 11 Downloads

## Abstract

We prove a structure theorem for multiplicative functions on the Gaussian integers, showing that every bounded multiplicative function on the Gaussian integers can be decomposed into a term which is approximately periodic and another which has a small *U*^{3}-Gowers uniformity norm. We apply this to prove partition regularity results over the Gaussian integers for certain equations involving quadratic forms in three variables. For example, we show that for any finite coloring of the Gaussian integers, there exist distinct nonzero elements *x* and *y* of the same color such that *x*^{2}−*y*^{2} = *n*^{2} for some Gaussian integer *n*. The analog of this statement over Z remains open.

## Preview

Unable to display preview. Download preview PDF.

## References

- [1]V. Bergelson,
*Ergodic Theory and Diophantine Problems: Topics in Symbolic Dynamics and Applications*, Cambridge Univ. Press, Cambridge, 1996, pp. 167–205.Google Scholar - [2]V. Bergelson and A. Leibman,
*Polynomial extensions of van der Waerden’s and Szemerédi theorems*, J. Amer. Math. Soc.**9**(1996), 725–753.MathSciNetCrossRefMATHGoogle Scholar - [3]V. Bergelson and R. McCutcheon,
*Recurrence for semigroup actions and a non-commutative Schur theorem*, Topological Dynamics and Applications, Amer. Math. Soc., Providence, RI, 1998, pp. 205–222.MATHGoogle Scholar - [4]N. Frantzikinakis and B. Host,
*Higher order Fourier analysis of multiplicative functions and applications*, J. Amer. Math. Soc.**30**(2017), 67–157.MathSciNetCrossRefMATHGoogle Scholar - [5]N. Frantzikinakis and B. Host,
*Uniformity of multiplicative functions and partition regularity of some quadratic equations*, arXiv: 1303. 4329.Google Scholar - [6]H. Furstenberg,
*Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions*, J. Anal. Math.**31**(1977), 204–256.CrossRefMATHGoogle Scholar - [7]T. Gowers,
*A new proof of Szemerédi theorem*, Geom. Funct. Anal.**11**(2001), 465–588.MathSciNetCrossRefMATHGoogle Scholar - [8]T. Gowers,
*Decompositions, approximate structure, transference, and the Hahn-Banach theorem*,*Bull. London Math. Soc.***42**(2010), 573–606.MathSciNetCrossRefMATHGoogle Scholar - [9]T. Gowers and J. Wolf,
*Linear forms and quadratic uniformity for functions on ZN*, J. Anal. Math.**115**(2011), 121–186.MathSciNetCrossRefMATHGoogle Scholar - [10]B. Green and T. Tao,
*The primes contain arbitrarily long arithmetic progressions*. Ann. of Math.**167**(2008), 481–547.MathSciNetCrossRefMATHGoogle Scholar - [11]B. Green and T. Tao,
*An arithmetic regularity lemma, associated counting lemma, and applications*, An Irregular Mind, Janos Bolyai Math. Soc., Budapest, 2010, pp. 261–334.MATHGoogle Scholar - [12]B. Green and T. Tao,
*Linear equations in primes*, Ann. of Math. (2)**171**(2010), 1753–1850.MathSciNetCrossRefMATHGoogle Scholar - [13]B. Green and T. Tao,
*The Mobius function is strongly orthogonal to nilsequences*, Ann. of Math. (2)**175**(2012), 541–566.MathSciNetCrossRefMATHGoogle Scholar - [14]B. Green and T. Tao,
*The quantitative behaviour of polynomial orbits on nilmanifolds*, Ann. of. Math. (2)**175**(2012), 465–540.MathSciNetCrossRefMATHGoogle Scholar - [15]B. Green and T. Tao,
*On the quantitative distribution of polynomial nilsequences - erratum*, Ann. of Math. (2)**179**(2014), 11751183.CrossRefMATHGoogle Scholar - [16]B. Green, T. Tao, and T. Ziegler,
*An inverse theorem for the Gowers U*^{s+1}-*norm*, Ann. of Math. (2)**176**(2012), 1231–1372.MathSciNetCrossRefMATHGoogle Scholar - [17]G. H. Hardy and S. Ramanujan,
*Twelve Lectures on Subjects Suggested by his Life and Work*, 3rd ed., Chelsea, New York, 1999, p. 67.Google Scholar - [18]B. Host and B. Kra,
*Nonconventional ergodic averages and nilmanifolds*, Ann. of Math. (2)**161**(2005), 397–488.MathSciNetCrossRefMATHGoogle Scholar - [19]A. Khalfalah and E. Szemeredi,
*On the number of monochromatic solutions of x+y = z*^{2}, Combin. Probab. Comput.**15**(2006), 213–227.MathSciNetCrossRefMATHGoogle Scholar - [20]J. Neukirch,
*Algebraic Number Theory*, Springer, New York, 1999.CrossRefMATHGoogle Scholar - [21]
- [22]A. Sarközy,
*On difference sets of integers. III*, ActaMath. Acad. Sci. Hungar.**31**(1978), 355–386.MathSciNetCrossRefMATHGoogle Scholar - [23]B. Szegedy,
*On higher order Fourier analysis*, arXiv: 1203. 2260.Google Scholar - [24]T. Tao,
*A quantitative ergodic theory proof of Szemeredi’s theorem*, Electron. J. Combin. (2)**13**(2006), Research Paper 99.MathSciNetMATHGoogle Scholar - [25]P. Tchebichef,
*Mémoire sur les nombres premiers*, J. Math. Pures Appl.**17**(1852), 366–390.Google Scholar

## Copyright information

© Hebrew University Magnes Press 2018