Journal of Coastal Conservation

, Volume 23, Issue 4, pp 727–746 | Cite as

New data on the postglacial development of Narva-Luga Klint Bay (Eastern Gulf of Finland): results of geoarchaeological research

  • D. V. RyabchukEmail author
  • A. Yu Sergeev
  • D. V. Gerasimov
  • A. Kriiska
  • K. Nordqvist
  • L. M. Budanov
  • O. A. Kovaleva
  • V. A. Zhamoida
  • M. A. Anisimov
  • A. V. Terekhov


This paper presents the first results of geological and geoarchaeological multi-proxy studies conducted from 2012 to 2017 in the northern part of Narva-Luga Klint Bay (between the Kurgalov and Kurovitski Plateaus). A detailed geological study using ground-penetrating radar (GPR), drilling, outcrops description and sampling revealed a previously unknown accumulative landform (the Kuzemkino “palaeospit”). The GPR data set indicates that the accretion form is a polygenic, steeply inclined glaciofluvial delta foreset, which was formed during the Pandivere stage of deglaciation as a result of consistent discharges of huge amounts of sediment materials from the melting ice-sheet and arriving from the south, west, north-west and south-west. The foreset was formed within a relatively shallow (approximately 20 m) ice-dammed lake, which did not have an outlet in the south-western direction during that time period. In the Holocene, the foreset became a source of sediment for the development of the largest accretion form of Narva-Luga Klint Bay – the Kudruküla Spit. During the maximal level of the Littorina transgression, the Kuzemkino landform was a peninsula or an island. A relatively long-term stabilization of the sea level apparently occurred at 8.5 m a.s.l. The beach and submarine sand ridges formed during this time interval were subsequently unaffected by marine transgressions and were preserved as relict forms in the relief. The Kuzemkino landform was settled by ancient peoples after the Littorina maximum. There is evidence that the settlers’ long-term subsistence strategy was based on the combined exploitation of coastal and forest resources.


Kuzemkino landform Narva-Luga Klint Bay Geoarcheology Late Pleistocene – Holocene Glaciofluvial delta 



Geoarcheological research of 2012–2017 were organized with the support of RFBR projects 12-05-01121, 15-05-08169, the research projects of the Estonian Research Council “Estonia in Circum-Baltic space: archaeology of economic, social, and cultural processes” (IUT20-7) and of MAE RAS “Stone Age – Early Metal Epoch sites refugium in the Narva-Luga Klint Bay”. Geological and geophysical data analyses was carried out in frames of the project № 17-77-20041 of the Russian Science Foundation. The authors thank the Reviewers for careful revision of our manuscript, helpful and important comments.


  1. Alexanderson H, Bernhardson M, Kaliska-Nartiša E (2016) Aeolian activity in Sweden: an unexplored environmental archive. LUNDQUA Report 42, Lund: Department of Geology, Lund UniversityGoogle Scholar
  2. Andren T, Björck S, Andren E, Conley L Z, Anjar J (2011) The development of the Baltic Sea Basin during the last 130 ka. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Springer, pp 75–97Google Scholar
  3. Ashton AD, Murray AB (2006a) High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J Geophys Res Earth Surf 111(F4) Art No. F04011Google Scholar
  4. Ashton AD, Murray AB (2006b) High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. J Geophys Res Earth Surf 111(F4) 111(F4), Art No. F04012Google Scholar
  5. Ashton AD, Murray AB, Arnault O (2001) Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414:296–300CrossRefGoogle Scholar
  6. Atlas of geological and environmental geological maps of the Russian area of the Baltic Sea (2010) VSEGEI (In Russian)Google Scholar
  7. Badjukova EN, Zhindarev LA, Luk'janova SA, Solov'eva GD (2007) Analysis of geological structure of the Curonian spit (Baltic Sea) to specify stages of its development. Okeanologija (Oceanology) 47(4):594–604Google Scholar
  8. Bitinas A, Zaromskis R, Gulbinskas S, Damusyte A, Zilinskas G, Jarmalavicius D (2005) The results of integrated investigations of the Lithuanian coast of the Baltic Sea: geology, geomorphology, dynamics and human impact. Geological Quarterly 49(4):355–362Google Scholar
  9. Bronk Ramsey C (2013) OxCal (computer program). Version 4.2. The Manual (available at
  10. Colenutt A, Westhead K, Evan J, McVey S, Le Bas T (2015) Interpreting monitoring data for shoreline and geohazard mapping. Proc Inst Civ Eng Marit Eng 168:118–124Google Scholar
  11. Dietrich P, Ghienne JF, Normandeau A, Lajeunesse A (2016) Upslope-mugrating bedforms in a proglacial Sandur delta: cyclic spets from river-derived underflows? J Sediment Res 86:113–123. CrossRefGoogle Scholar
  12. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165CrossRefGoogle Scholar
  13. Folk RL, Ward WC (1957) Brazos River bar – a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  14. Geology of Quaternary deposits of North-West of European part of USSR (1967) Apouchtin N, Krasnov I (eds) “Nauka” Publishing House (In Russian)Google Scholar
  15. Gerasimov DV (2015) “Little pigeons can carry great messages”: on reference sites for Stone Age — Early Metal Epoch studies in the south-eastern part of the Gulf of Finland (in Russian with English abstract) In: Zamyatninskiy sbornik, 4. SPb. MAE RAN. Pp. 192–206Google Scholar
  16. Gerasimov DV, Kholkina MA (2015) Archaeological studies on ancient lagoon systems: investigations in the Narva-Luga area in 2012–2014. Mater Field Stud MAE Rus Academy Sci pp 243–259 (in Russian)Google Scholar
  17. Gerasimov D, Kriiska A (2013) Cultural and landscape formation in the Eastern Gulf of Finland, Baltic Sea: results of small-scale archaeological excavations in a large region in: 19th annual meeting of the European association of archaeologicts. Pilsen. P. 193Google Scholar
  18. Gerasimov D, Kriiska A (2017) Early-middle Holocene archaeological periodization and environmental changes in the eastern gulf of Finland: interpretative correlation. Quat Int 1−16 (in print)Google Scholar
  19. Gerasimov D, Subetto D (2009) History of Lake Ladoga in the light of the archaeological data. Izvestia: Herzen Univ J Humanit Sci 106:37–49 (In Russian)Google Scholar
  20. Gerasimov DV, Kriiska A, Lisitsyn SN (2010) Colonization of the Gulf of Finland (Baltic Sea) coastal zone in the stone age. In: III Northern Archaeological Congress Papers Ekaterinburg. Khanty-Mansiisk, pp 29–54Google Scholar
  21. Gerasimov DV, Kriiska A, Lisitsyn SN (2012) Stone age sites in the south-eastern part of the Gulf of Finland coast: chronology and geomorphology. Brief Communications Inst Archaeol 227:243–249Google Scholar
  22. Gilbert GK (1885) The topographic features of lake shores. US Geol Surv Ann Rep 5:69–123Google Scholar
  23. Gobo K, Ghinassi M, Nemec W (2015) Gilbert-type deltas recording short-term base-level changes: Delta-brink morphodynamics and related foreset facies. Sedimentol 62:1–27CrossRefGoogle Scholar
  24. Guidebook of geological excursions A-15, C-15. Leningrad and Leningradskaya Oblast (1982) XI INQUA Congress Moscow: VINITI (In Russian)Google Scholar
  25. Guidelines for the fractional particle size analyses sedimentation method (with the use of Hydraulic sedimentator G–I) (1989) VNIGRI, Leningrad (In Russian)Google Scholar
  26. Gurina NN (1967) From the history of the ancient tribes of the western regions of the USSR (on the materials of the expedition of Narva). In: Materials and researches on archeology of the USSR, pp 1–144Google Scholar
  27. Harff J, Meyer M (2011) Coastlines of the Baltic sea – zones of competition between geological processes and a changing climate: examples from the southern Baltic. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Springer, pp 149–164Google Scholar
  28. Harff J, Deng J, Dudzińska-Nowak J, Fröhle P, Groh A, Hünicke B, Soomere T, Zhang W (2017) What determines the change of coastlines in the Baltic Sea? In: Harff J, Furmańczyk K, von Storch H (eds) Coastline changes of the Baltic sea from south to east. Past and future projections, pp 15–35Google Scholar
  29. Hede M, Sander L, Clemmensen LB, Kroon A, Pejrup M, Nielsen L (2015) Changes in Holocene relative sea-level and coastal morphology: a study of a raised beach ridge system on Samsø, southwest Scandinavia. The Holocene 25(9):1402–1414. CrossRefGoogle Scholar
  30. Heinz J, Aigner T (2003) Hierarchical dynamic stratigraphy in various quaternary gravel deposits, Rhine glacier area (SW Germany): implications for hydrostratigraphy. Int О Earth Sci 92:923–938. CrossRefGoogle Scholar
  31. Helmersen G (1864) Der Peipus-See und die obere Narowa, in Beitr. Kennt Russ Reichs 24:1–88Google Scholar
  32. Indreko R (1932) Kiviaja võrgujäänuste leid Narvas. – Eesti Rahva Muuseumi Aastaraamat, VII. Tartu, pp 48–67Google Scholar
  33. Indreko R (1948) Bemerkungen über die wichtigsten steinzeitlichen Funde in Estland in den Jahren 1937–1943. – Antikvariska Studier, III. Kungliga Vitterhets Historie och Antikvitets Akademiens HandlingarGoogle Scholar
  34. Jaanits L (1955) Neoliitilised asulad Eesti NSV territooriumil. – Muistsed asulad ja linnused. Ed. by H. Moora and L. Jaanits. Tallinn, pp 176–201Google Scholar
  35. Jaanits L (1965) Über die Ergebnisse der Steinzeitforschung in Sowjetestland. – Finskt Museum, LXXII, pp 5–46Google Scholar
  36. Jussila T, Kriiska A (2004) Shore displacement chronology of the Estonian stone age. Estonian Journal of Archaeology 8(1):3–32Google Scholar
  37. Kalinska-Nartisa E, Nartiss M, Thiel C, Buylaert JP, Murray AS (2015) Late-glacial to Holocene aeolian deposition in northeastern Europe - the timing of sedimentation at the Iisaku site (NE Estonia). Quat Int 357:70–81. CrossRefGoogle Scholar
  38. Kessel H (1963) On the age of Holocene transgressions of the Baltic Sea in Estonia by palynological analysis. Baltica 1:101–115Google Scholar
  39. Kessel H, Raukas A (1967) The deposits of Ancylus Lake and Littorina Sea in Estonia. Valgus, Tallinn (In Russian)Google Scholar
  40. Kotelnikov BN (1989) Reconstruction of the genesis of sands. LSU, LeningradGoogle Scholar
  41. Kriiska A (1996) Stone age settlements in the lower reaches of the Narva River, north-eastern Estonia. In: Hackens T, Hicks S, Lang V (eds.) Coastal Estonia: recent advances in environmental and cultural history, pp 359–369Google Scholar
  42. Kriiska A (1999) Formation and development of the stone age settlement at Riigiküla, northeastern Estonia. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S (eds.) Environmental and cultural history of the eastern Baltic Region, pp 173–183Google Scholar
  43. Kriiska A (2001) Stone age settlement and economic processes in the Estonian coastal area and islands. Dissertation, University of HelsinkiGoogle Scholar
  44. Kriiska A, Gerasimov D (2014) Late Mesolithic period in the Eastern Baltic: Formation of the coastal settlement system from the Riga Bay till the Vyborg Bay. In: From the Baltic to Urals: Essays on the Stone Age Archaeology. – Syktyvkar, pp 5–36 (in Russian)Google Scholar
  45. Kriiska A, Gerasimov DV, Nordqvist K, Lisitsyn SN, Sandell S, Kholkina MA (2016) Stone age research in the Narva–Luga Klint Bay area in 2005–2014. In: Uino P, Nordqvist K (eds) New sites, new methods: Proceedings of the Finnish-Russian Archaeological Symposium, Helsinki, 19–21 November, 2014, pp. 92–106Google Scholar
  46. Kriiska A, Oras E, Lõugas L, Meadows J, Lucquin A, Craig O (2017) Late Mesolithic Narva stage in Estonia: pottery, settlement types and chronology. Estonian J Archaeol 21(1):52–86Google Scholar
  47. Lampe R, Meter H, Ziekur R, Janke W, Endtmann E (2007) Holocene evolution of the irregularly sinking Baltic Sea coast and the interactions of the sea-level rise, accumulation space and sediment supply. In: Harff J, Luth F (eds) Bericht der Romisch-Germanischen Kommission, 88:14–46Google Scholar
  48. Leont’yev I, Ryabchuk D, Zhamoida V, Spiridonov M, Kurennoy D (2010) Reconstruction of Late Holocene development of the submarine terrace in the eastern gulf of Finland. Baltica 23(2):101–108Google Scholar
  49. Lepland A, Hang T, Kihno K, Sakson M, Sandgren P, Lepland A (1996) Holocene sea-level changes and environmental history in the Narva area, north-eastern Estonia. In: Hackens T (ed) Coastal Estonia: recent advances in environmental and cultural history. PACT Belgium, Rixensart, pp 313–358Google Scholar
  50. Logvinenko NV, Barkov LK, Suslov GA et al (1974) Sediments and lithodynamics of the Narva Bay coastal slope. Baltica 6(In Russian):91–97Google Scholar
  51. Logvinenko NV, Barkov LK, Usenkov SM (1988) Lithology and lithodynamics of the recent sediments of the eastern gulf of Finland. LeningradGoogle Scholar
  52. Markov KK (1927) Short geomorphological description of Kingisepp District. News of the Central Hydrometeorological Bureau, Leningrad (In Russian)Google Scholar
  53. Markov KK (1931) Development of the relief in the northwestern part of the Leningrad District. Geological Survey of USSR, Moscow, Leningrad (In Russian)Google Scholar
  54. Markov KK (1955) History of the north-western part of the Leningrad region during late-glacial and post-glacial periods. In: Essays on the geography of the Quaternary period, Moscow, pp 157–162Google Scholar
  55. Martin E, Schwartz M (1991) Geomorphic evolution of the Narva-Luga coast, USSR. Shore Beach 59(2):28–32Google Scholar
  56. Miettinen A, Savelieva L, Subetto D, Dzinoridze R, Arslanov K (2007) Palaeoenvironment of the Karelian isthmus, the easternmost part of the Gulf of Finland, during the Litorina Sea stage of the Baltic Sea history. Boreas 36:441–458CrossRefGoogle Scholar
  57. Molodkov A, Bitinas A (2006) Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas 35:244–254CrossRefGoogle Scholar
  58. Orviku K (1936) Geoloogilisi märkmeid geoloogilis-geograafiliselt õppeekskursioonilt Narva ja selle lähemasse ümbrusse 10.–14. juunil 1936, in Eesti Loodus, 4, pp 149–157Google Scholar
  59. Orviku K, Granö O (1992) Contemporary coasts. In: Raukas A, Hüvarinen H (eds) Geology of the Gulf of Finland, Valgus, Tallinn, pp 219–238 (In Russian)Google Scholar
  60. Orviku K, Romm G (1992) Lithomorphdynamical processes of Narva Bay. Proc Est Acad Sci 41(3):139–147 (In Russian)Google Scholar
  61. Poutanen M, Steffen H (2014) Land uplift at Kvarken archipelago / high coast UNESCO world heritage area. Geophysica 50(2):49–64Google Scholar
  62. Powers MC (1953) A new roundness scale for sedimentary particles. J Sediment Petrol 23:117–119CrossRefGoogle Scholar
  63. Ramsay W (1929) Niveauverschiebungen, eisgestaute Seen und Rezession des Inlandeises in Estland (Fennia, Bd. 52, N.2)Google Scholar
  64. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarb 55:1111–1150Google Scholar
  65. Romanovsky SI (1988) Physical sedimentology. LeningradGoogle Scholar
  66. Rosentau A, Muru M, Kriiska A, Subetto DA, Vassiljev J, Hang T, Gerasimov D, Nordqvist K, Ludikova A, Lõugas L, Raig H, Kihno K, Aunap R, Letyka N (2013) Stone age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern gulf of Finland. Boreas.
  67. Rosentau A, Bennike O, Uscinowicz Sz, Miotk-Spiganowicz G (2017) The Baltic Basin// Submerged landscapes of the European continental shelf. Quaternary paleoenvironment. Flemming N., Harff J., Moura D., Burgess A., Bailey G. (Eds.), pp 103–134Google Scholar
  68. Ryabchuk D, Zhamoida V, Amantov A, Sergeev A, Gusentsova T, Sorokin P, Kulkova M, Gerasimov D (2016) Development of the coastal systems of the easternmost gulf of Finland, and their links with Neolithic-bronze and Iron age settlements. J Geol Soc 411(1):51–76Google Scholar
  69. Saarnisto M, Siiriäinen A (1970) Laatokan transgressioraja. Suomen museo 77:10–22Google Scholar
  70. Sander L, Fruergaard M, Koch J, Johannessen PN, Pejrup M (2015) Sedimentary indications and absolute chronology of Holocene relative sea-level changes retrieved from coastal lagoon deposits on Samsø, Denmark. Boreas 44:706–720. CrossRefGoogle Scholar
  71. Sandgren P, Subetto DA, Berglund BE, Davydova NN, Savelieva LA (2004) Mid-Holocene Littorina Sea transgressions based on stratigraphic studies in coastal lakes of NW Russia. GFF 126:363–380CrossRefGoogle Scholar
  72. Shepard F P (1963) Submarine geology. New YorkGoogle Scholar
  73. Sivkov V, Dorokhov D, Ulyanova M (2011) Submerged Holocene wave-cut cliffs in the south-eastern part of the Baltic Sea: reinterpretation based on recent bathymetrical data. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, Springer, pp 203–217Google Scholar
  74. Sokołowski RJ (2016) Middle and Late Pleistocene fluvial to glacio-deltaic succession in the Mrzezino site, northern Poland. In: Sokolowski R, Moskalewicz В (eds) Quaternary geology of north-Central Poland: from the Baltic coast to the last glacial Maximun limit, University of Gdansk, pp 36–52Google Scholar
  75. Starovoitov AV (2008) Interpretation of GPR data. MSU, MoscowGoogle Scholar
  76. State Geological Map of Russian Federation, scale 1:200000, Sheet O-35-V (2001) Koyanova I.B., Ed. Yakobon K.E.
  77. State Geological Map of Soviet Union, scale 1:200000, Sheet O-35-V (1964) Sammet E.Yu., Ed. Kotlikov V.A.
  78. Tallgren AM (1922) Zur Archäologie Eestis, I. Vom Anfang der Besiedlung bis etwa 500 n. Chr. Acta Commentationes Universitatis Tartuensis (Dorpatensis), B III: 6. DorpatGoogle Scholar
  79. Tammekann A (1940) The Baltic Glint. A geomorphological study part I. Morphography of the Glint. In: Public Inst Uni Tartuensis Geographici, 24:1–103Google Scholar
  80. Tercier P, Knight R, Jol H (2000) A comparison of the correlation structure in GPR images of deltaic and barrier-spit depositional environments. Geophysics 65(4):1142–1153CrossRefGoogle Scholar
  81. Thomson P (1937) Narva diatomit. Eesti Loodus 5:214–216Google Scholar
  82. Tšugai A, Plado J, Jõeleht A, Kriiska A, Mustasaar M, Raig H, Risberg J, Rosentau A (2014) Ground-penetrating radar and geological study of the Kudruküla stone age archaeological site, Northeast Estonia. Archaeol Prospect 21(3):225–234CrossRefGoogle Scholar
  83. Uscinowicz S (2003) Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the southern Baltic. Pol Geological Inst Special Papers 10:1–79Google Scholar
  84. Vassiljev J, Saarse L (2013) Timing of the Baltic ice Lake in the eastern Baltic. Bull Geol Soc Finl 85:9–18CrossRefGoogle Scholar
  85. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392CrossRefGoogle Scholar
  86. Zenkovich VP (1967) Processes of coastal development. Interscience Publishers, New YorkGoogle Scholar
  87. Znamenskaya OM, Tcheremisinova EA (1974) Development of the water basins in the eastern part of the Gulf of Finland during the late- and postglacial times. Baltica 5:9–104Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • D. V. Ryabchuk
    • 1
    • 2
    Email author
  • A. Yu Sergeev
    • 1
  • D. V. Gerasimov
    • 3
  • A. Kriiska
    • 4
  • K. Nordqvist
    • 5
  • L. M. Budanov
    • 1
    • 6
  • O. A. Kovaleva
    • 1
  • V. A. Zhamoida
    • 1
    • 2
  • M. A. Anisimov
    • 2
  • A. V. Terekhov
    • 1
    • 7
  1. 1.A.P. Karpinsky Russian Geological Research Institute (VSEGEI)St. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) Russian Academy of SciencesSt. PetersburgRussia
  4. 4.Tartu UniversityTartuEstonia
  5. 5.University of OuluOuluFinland
  6. 6.Mining UniversitySt. PetersburgRussia
  7. 7.Institute for LimnologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations