Advertisement

Journal of Coastal Conservation

, Volume 22, Issue 4, pp 605–614 | Cite as

Doñana mobile dunes: what is the vegetation pattern telling us?

  • José Carlos Muñoz-Reinoso
Article

Abstract

In coastal dunes, changes in plant composition and vegetation pattern can reveal processes such as plant succession, dune stabilization or reactivation. With that goal, I sampled plant species composition, topography and sand mobility along 4 parallel transects perpendicular to the coastline in the mobile dune system of Doñana. I used Split Moving Window to locate boundaries between plant communities along transects. To assess the main trends in variation, data of plant cover from all transects were subject to multivariate ordination analysis. Plant composition and geomorphological traits allowed to distinguish several stretches along all transects. Multivariate analyses reflected two different trends, plant succession and dune stabilization. High cover of Halimium halimifolium in the primary dune slack was consistent with the lack of new deposits of fresh sand. Growth of pine trees facilitated the colonization of the dune tail by H. halimifolium in a positive feedback. Although several studies have pointed out a decrease in the advance rates of dunes due to an increase in plant cover, the present results suggest that the increase in plant cover in the outer dunes is due to the stabilization of the secondary dune. Therefore, vegetation pattern evidenced a process of dune stabilization, which may produce loss of original plant communities and heterogeneity of dune landscapes.

Keywords

Doñana Dune stabilization Pinus pinea Plant succession Scrub encroachment Vegetation pattern 

Nomenclature

Valdés et al. (1987)

Abbreviations

MRPP

Multi-response permutation procedure

SMW

Split Moving Window

Notes

Acknowledgements

This research was carried out within the framework of the “Conservation Program of Maritime Juniper Woodlands (2002–2006)”. I thank the funds provided by the Consejería de Innovación of the Andalusian Government through the Technology Transfer Office for the development of the research (2009, 2010). I also thank Dr. de Castro, Dr. Fernández-Alés and an anonymous reviewer for their comments on the manuscript.

References

  1. Allier C (1975) La vegetation psammophile du littoral de la Reserve Biologique de Doñana. In: Doñana. Prospección e inventario de ecosistemas, Monog. 18, ICONA, Ministerio de Agricultura, Madrid, pp 131–157Google Scholar
  2. Arens SM, Slings QL, Geelen LHWT, van der Hagen HGJM (2013) Restoration of dune mobility in The Netherlands. Martínez ML, Fernández-Gallego JB, Hesp PA (editors) Restoration of coastal dunes, Springer, Berlin:107–124Google Scholar
  3. Carter RWG, Wilson P (1990) The geomorphological, ecological and pedological development of coastal foredunes at Magilligan point, Northern Ireland. In: Nordstrom KF, Psuty NP, Carter RWG (eds) Coastal dunes: form and process. John Wiley and sons, London, pp 129–158Google Scholar
  4. CEDEX (2013) Estudio de la dinámica litoral, defensa y propuesta de mejora en las playas con problemas: estudio de actuación del tramo de costa comprendido enetre las desembocaduras de los ríos Guadiana y Guadalquivir. MAGRAMA, Madrid, 169 ppGoogle Scholar
  5. Cornelius JM, Reynolds JF (1991) On determining the statistical significance of discontinuities with ordered ecological data. Ecology 72(6):2057–2070.  https://doi.org/10.2307/1941559 CrossRefGoogle Scholar
  6. de Castro F (1995) Computer simulation of the dynamics of a dune system. Ecol Model 78(3):205–217.  https://doi.org/10.1016/0304-3800(93)E0090-P CrossRefGoogle Scholar
  7. Crawford RMM (1989) Studies in plant survival. Ecological case histories of plant adaptation to adversity. Blackwell, OxfordGoogle Scholar
  8. Dech JP, Maun MA (2005) Zonation of vegetation along a burial gradient on the leeward slopes of Lake Huron sand dunes. Can J Botany 83(2):227–236.  https://doi.org/10.1139/b04-163 CrossRefGoogle Scholar
  9. Dickinson KJM, Mark AF (1994) Forest-wetland vegetation patterns associated with a Holocene dune-slack sequence, Haast Ecological District, south western New Zealand. J Biogeogr 21(3):259–281.  https://doi.org/10.2307/2845529 CrossRefGoogle Scholar
  10. Doing H (1985) Coastal fore-dune zonation and succession in various parts of the world. Vegetatio 61(1-3):65–75.  https://doi.org/10.1007/BF00039811 CrossRefGoogle Scholar
  11. Doody JP (ed) (2008) Sand dune inventory of Europe, 2nd Edition. National Coastal Consultants and EUCC-The Coastal Union edn in association with the IGU Coastal Commission 142 ppGoogle Scholar
  12. Feagin RA, Wu XB, Smeins FE, Whisenant SG, Grant WE (2005) Individual versus community level processes and pattern formation in a model of sand dune plant succession. Ecol Model 183(4):435–449.  https://doi.org/10.1016/j.ecolmodel.2004.09.002 CrossRefGoogle Scholar
  13. Fenu G, Carboni M, Acosta ATR, Bacchetta G (2012) Environmental factors influencing coastal vegetation pattern: new insights from the Mediterranean Basin. Folia Geobotanica 48(4):493–508.  https://doi.org/10.1007/s12224-012-9141-1 CrossRefGoogle Scholar
  14. Gallego Fernández JB, Muñoz-Reinoso JC, García Novo F (2009) Long term study of Pinus pinea L. forest in the mobile dunes of Doñana National Park, SW Spain. 10th international coastal symposium, book of abstract, LisbonGoogle Scholar
  15. García Novo F, Merino J (1997) Pattern and process in the dune system of the Doñana National Park, southwestern Spain. In: van der Maarel E (ed) Ecosystems of the world 2C. Dry coastal ecosystems, Elsevier, Amsterdam, pp 453–468Google Scholar
  16. García Novo F, Ramírez L, Torres A (1976) El sistema de dunas de Doñana. Naturalia Hispanica 5:1–56Google Scholar
  17. Granados Corona M (1987) Transformaciones históricas de los ecosistemas del Parque Nacional de Doñana, PhD Thesis, Universidad de Sevilla, 485 pp+appendGoogle Scholar
  18. Granados Corona M, Martín Vicente A, García Novo F (1987) Evolución conjunta del paisaje y su gestión. El caso del Parque Nacional de Doñana. Estudios Territoriales 24:183–197Google Scholar
  19. Grootjans AP, Hartog PS, Fresco LFM, Esselink H (1991) Succession and fluctuation in a dune wet slack in relation to hydrological changes. J Veg Sci 2(4):545–554.  https://doi.org/10.2307/3236037 CrossRefGoogle Scholar
  20. Levin N, Kidron GJ, Ben-Dor E (2008) A field quantification of coastal dune perennial plants as indicators of surface stability, erosion or deposition. Sedimentology 55:751–772CrossRefGoogle Scholar
  21. Ludwig JA, Cornelius JM (1987) Locating discontinuities along ecological gradients. Ecology 68(2):448–450.  https://doi.org/10.2307/1939277 CrossRefGoogle Scholar
  22. Luna MCM, Parteli EJR, Durán O, Herrmann HJ (2011) Model for the genesis of coastal dune fields with vegetation. Geomorphology 129(3-4):215–224.  https://doi.org/10.1016/j.geomorph.2011.01.024 CrossRefGoogle Scholar
  23. Maun MA, Perumal J (1999) Zonation of vegetation on lacustrine coastal dunes: effects of burial by sand. Ecol Lett 2(1):14–18.  https://doi.org/10.1046/j.1461-0248.1999.21048.x CrossRefGoogle Scholar
  24. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Sofware Design, Oregon, 300 ppGoogle Scholar
  25. Mielke PW Jr (1991) The application of multivariate permutation methods based on distance functions in the earth sciences. Earth-Sci Rev 31:55–71CrossRefGoogle Scholar
  26. Muñoz-Pérez JJ, López de San Román-Blanco B, Gutiérrez-Mas JM, Moreno L, Cuena GJ (2001) Cost of beach maintenance in the Gulf of Cadiz (SW Spain). Coast Eng 42(2):143–153.  https://doi.org/10.1016/S0378-3839(00)00054-5 CrossRefGoogle Scholar
  27. Muñoz-Reinoso JC (2001) Vegetation changes and groundwater abstraction in SW Doñana, Spain. J Hydrol 242(3-4):197–209.  https://doi.org/10.1016/S0022-1694(00)00397-8 CrossRefGoogle Scholar
  28. Muñoz-Reinoso JC (2003) Juniperus oxycedrus Ssp. macrocarpa in SW Spain: ecology and conservation problems. J Coast Conserv 9:113–122Google Scholar
  29. Muñoz-Reinoso JC (2009) Boundaries and scales in shrublands of the Doñana biological reserve, southwest Spain. Landsc Ecol 24(4):509–518.  https://doi.org/10.1007/s10980-009-9325-0 CrossRefGoogle Scholar
  30. Muñoz-Reinoso JC, de Castro F (2005) Application of a statistical water-table model reveals connections between dunes and vegetation at Doñana. J Arid Environ 60(4):663–679.  https://doi.org/10.1016/j.jaridenv.2004.07.006 CrossRefGoogle Scholar
  31. Muñoz-Reinoso JC, Jiménez B, Ruíz A, Trillo M, Yanes A (2000) Respuesta del enebro marítimo al enterramiento. Granada, Resúmenes del Simposio de la AEET Aspectos funcionales de los ecosistemas mediterráneosGoogle Scholar
  32. Muñoz-Reinoso JC, Rodríguez JL (2013) Datos para la plantación del enebro marítimo en sistemas dunares. In: Martínez-Ruíz C, Lario Leza FJ, Fernández-Santos B (eds) Avances en la restauración de sistemas forestales. Técnicas de implantación, SECF-AEET, Madrid, pp 163–168Google Scholar
  33. Ojeda J, Vallejo I, Malvarez GC (2005) Morphometric evolution of the active dune system of the Doñana Nacional Park, southern Spain (1977-1999). J Coastal Res, Special Issue 49:40–45Google Scholar
  34. Oosting HJ, Billings WD (1942) Factors effecting vegetational zonation on coastal dunes. Ecology 23(2):131–142.  https://doi.org/10.2307/1931081 CrossRefGoogle Scholar
  35. Provoost S, Laurence M, Jones M, Edmondson SE (2011) Changes in landscape and vegetation of coastal dunes in northwest Europe: a review. J Coast Conserv 15(1):207–226.  https://doi.org/10.1007/s11852-009-0068-5 CrossRefGoogle Scholar
  36. Psuty NP (2004) The coastal foredune: a geomorphological basis for regional coastal dune development. In: Martínez ML, Psuty NP (eds) Coastal dunes: ecology and conservation. Ecological studies, vol 171. Springer-Verlag, Berlin, pp 11–27CrossRefGoogle Scholar
  37. Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman, LondonGoogle Scholar
  38. Raventós J, De Luis M, Gras MJ, Čufar K, González-Hidalgo JC, Bonet A, Sánchez JR (2001) Growth of Pinus pinea and Pinus halepensis as affected by dryness, marine spray and land use changes in a Mediterranean semiarid ecosystem. Dendrochronologia 19:211–220Google Scholar
  39. Rhind P, Jones R, Jones L (2013) The impact of dune stabilization on the conservation status of sand dune systems in Wales. In: Martínez ML, Fernández-Gallego JB, Hesp PA (eds) Restoration of coastal dunes. Springer, Berlin, pp 125–143CrossRefGoogle Scholar
  40. Rivas Martínez S, Costa M, Castroviejo S, Valdés E (1980) La vegetación de Doñana (Huelva, España). Lazaroa 2:5–190Google Scholar
  41. Rodríguez-Ramírez A, Morales JA, Delgado I, Cantano M (2008) The impact of man on the morphodynamics of the Huelva coast (SW Spain). J Iberian Geol 34:313–327Google Scholar
  42. Tsoar H (2005) Sand dunes mobility and stability in relation to climate. Physica A 357(1):50–56.  https://doi.org/10.1016/j.physa.2005.05.067 CrossRefGoogle Scholar
  43. Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landsc Ecol 3(3–4):245–252.  https://doi.org/10.1007/BF00131542 CrossRefGoogle Scholar
  44. Valdés B, Talavera S, Galiano EF (1987) Flora vascular de Andalucía Occidental. Ketres Editora, BarcelonaGoogle Scholar
  45. Vallejo I (2007) Caracterización geomorfológica y análisis de la evolución reciente del sistema de dunas activas del Parque Nacional de Doñana (1956–2001). PhDThesis, Universidad de Sevilla, 468 ppGoogle Scholar
  46. Vallejo I, Márquez J (2006) Doñana active dune system: an example of fragile equilibrium ecosystem in the Mediterranean environment. Publicationes Instituti Geographici Universitatis Tartuensis 101:31–38Google Scholar
  47. van der Maarel E (1997) Coastal dunes: pattern and process: zonation and succession. In: van der Maarel E (ed) Dry coastal ecosystems, general aspects (ecosystems of the world 2C). Elsevier, Amsterdam, pp 505–517Google Scholar
  48. van der Maarel E, Leertouwer A (1967) Variation in vegetation and species diversity along a local environmental gradient. Acta Bot Neerl 16:1–11CrossRefGoogle Scholar
  49. van Leeuwen CG, van der Maarel E (1971) Pattern and process in coastal dune vegetations. Acta Bot Neerl 20(1):191–198.  https://doi.org/10.1111/j.1438-8677.1971.tb00699.x CrossRefGoogle Scholar
  50. Wilson JB, Sykes MT (1999) Is zonation on coastal sand dunes determined primarily by sand burial or salt spray? A test in New Zealand dunes. Ecol Lett 2(4):233–236.  https://doi.org/10.1046/j.1461-0248.1999.00084.x CrossRefGoogle Scholar
  51. Yura H, Ogura A (2006) Sandblasting as a possible factor controlling the distribution of plants on a coastal dune system. Plant Ecol 185(2):199–208.  https://doi.org/10.1007/s11258-005-9095-y CrossRefGoogle Scholar
  52. Zunzunegui M, Ain-Lhout F, Díaz Barradas MC, Álvarez-Cansino L, Esquivias MP, García Novo F (2009) Physiological, morphological and allocation plasticity of a semi-deciduous shrub. Acta Oecol 35(3):370–379.  https://doi.org/10.1016/j.actao.2009.02.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain

Personalised recommendations