Polypropylene mesh and systemic side effects in inguinal hernia repair: current evidence

  • Cillian ClancyEmail author
  • Patrick Jordan
  • Paul F. Ridgway
Review Article



Increasing awareness and regulatory body attention is directed towards the insertion of synthetic material for a variety of surgical procedures. This review aims to assess current evidence regarding systemic and auto-immune effects of polypropylene mesh insertion in hernia repair.


The electronic literature on systemic and auto-immune effects associated with mesh insertion was examined.


Foreign body reaction following mesh implantation initiates an acute inflammatory cellular response. Involved markers such as IL-1, IL-6, IL-10 and fibrinogen are increased in circulation in the presence of mesh but return to normal at 7 days post operatively. Oxidative degradation of implanted mesh is likely, but no evidence exists to support systemic absorption or resulting disease effects. Variable cytokine production in healthy hosts leading to unpredictable or overwhelming response to implanted biomaterial warrants further investigation. Clinical studies show no associated long-term systemic effects with mesh.


To date, there remains no evidence to link polypropylene mesh and systemic or auto-immune symptoms. Based on current evidence, the use of polypropylene mesh is supported.


Autoimmune Hernia Mesh Systemic 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rutegård M, Gümüsçü R, Stylianidis G, Nordin P, Nilsson E, Haapamäki M (2018) Chronic pain, discomfort, quality of life and impact on sex life after open inguinal hernia mesh repair: an expertise-based randomized clinical trial comparing lightweight and heavyweight mesh. Hernia 22(3):411–418CrossRefGoogle Scholar
  2. 2.
    Dabbas N, Adams K, Pearson K, Royle G (2011) Frequency of abdominal wall hernias: is classical teaching out of date? JRSM Short Rep 2(1):5CrossRefGoogle Scholar
  3. 3.
    Beets GL, Oosterhuis KJ, Go PM, Baeten CG, Kootstra G (1997) Long term followup (12-15 years) of a randomized controlled trial comparing Bassini-Stetten, Shouldice, and high ligation with narrowing of the internal ring for primary inguinal hernia repair. J Am Coll Surg 185:352–357Google Scholar
  4. 4.
    Amid PK (2005) Groin hernia repair: open techniques. World J Surg 29(8):1046–1051CrossRefGoogle Scholar
  5. 5.
    Collaboration EUHT (2002) Repair of groin hernia with synthetic mesh: meta-analysis of randomized controlled trials. Ann Surg 235(3):322–332CrossRefGoogle Scholar
  6. 6.
    Öberg S, Andresen K, Klausen TW, Rosenberg J (2018) Chronic pain after mesh versus nonmesh repair of inguinal hernias: a systematic review and a network meta-analysis of randomized controlled trials. Surgery. 163:1151–1159. CrossRefGoogle Scholar
  7. 7.
    Simons MP, Aufenacker T, Bay-Nielsen M, Bouillot JL, Campanelli G, Conze J, de Lange D, Fortelny R, Heikkinen T, Kingsnorth A, Kukleta J, Morales-Conde S, Nordin P, Schumpelick V, Smedberg S, Smietanski M, Weber G, Miserez M (2009) European hernia society guidelines on the treatment of inguinal hernia in adult patients. Hernia 13(4):343–403CrossRefGoogle Scholar
  8. 8.
    Danielsson P, Isacson S, Hansen MV (1999) Randomised study of Lichtenstein compared with Shouldice inguinal hernia repair by surgeons in training. Eur J Surg 165(1):49–53CrossRefGoogle Scholar
  9. 9.
    Amato B, Moja L, Panico S, Persico G, Rispoli C, Rocco N, Moschetti I (2012) Shouldice technique versus other open techniques for inguinal hernia repair. Cochrane Database Syst Rev (4):CD001543.
  10. 10.
    Australian Commission on Safety and Quality in Healthcare. Last accessed 02/03/2018
  11. 11.
    Singh N, Picha GJ, Hardas B, Schumacher A, Murphy DK (2017) Five-year safety data for more than 55,000 subjects following breast implantation: comparison of rare adverse event rates with silicone implants versus National Norms and saline implants. Plast Reconstr Surg 140(4):666–679CrossRefGoogle Scholar
  12. 12.
    Zhu LM, Schuster P, Klinge U (2015) Mesh implants: an overview of crucial mesh parameters. World J Gastrointest Surg 7(10):226–236CrossRefGoogle Scholar
  13. 13.
    Kahan L, Blatnik J (2018) Critical under-reporting of hernia mesh properties and development of a novel package label. J Am Coll Surg 226(2):117–125CrossRefGoogle Scholar
  14. 14.
    FDA (2014) Safety Communications-surgical mesh: FDA safety communication. Last accessed 03/03/2018
  15. 15.
    Akre J (2014) Autoimmune diseases and surgical mesh—causation or correlation? Available from:
  16. 16.
  17. 17.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100CrossRefGoogle Scholar
  18. 18.
    Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115CrossRefGoogle Scholar
  19. 19.
    Kokotovic D, Burcharth J, Helgstrand F, Gögenur I (2017) Systemic inflammatory response after hernia repair: a systematic review. Langenbeck's Arch Surg 402(7):1023–1037CrossRefGoogle Scholar
  20. 20.
    Baylón K, Rodríguez-Camarillo P, Elías-Zúñiga A, Díaz-Elizondo JA, Gilkerson R, Lozano K (2017) Past, present and future of surgical meshes: a review. Membranes 7:47CrossRefGoogle Scholar
  21. 21.
    Öberg S, Andresen K, Rosenberg J (2017) Absorbable meshes in inguinal hernia surgery: a systematic review and meta-analysis. Surg Innov 24(3):289–298CrossRefGoogle Scholar
  22. 22.
    Klinge U, Klosterhalfen B, Muller M, Schumpelick V (1999) Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg 165(7):665–673CrossRefGoogle Scholar
  23. 23.
    Alfieri S, Amid PK, Campanelli G, Izard G, Kehlet H, Wijsmuller AR, di Miceli D, Doglietto GB (2011) International guidelines for prevention and management of post-operative chronic pain following inguinal hernia surgery. Hernia 15:239–249CrossRefGoogle Scholar
  24. 24.
    Massaron S, Bona S, Fumagalli U, Valente P, Rosati R (2008) Long-term sequelae after 1,311 primary inguinal hernia repairs. Hernia. 12(1):57–63CrossRefGoogle Scholar
  25. 25.
    Li J, Ji Z, Cheng T (2012) Lightweight versus heavyweight mesh in inguinal hernia repair: a meta-analysis. Hernia. 16(5):529–539CrossRefGoogle Scholar
  26. 26.
    Klosterhallfen B, Klinge U, Hermanns B, Schumpelick V (2000) Pathology of traditional surgical nets for hernia repair after long-term implantation in humans. Chirurg 71:43–51Google Scholar
  27. 27.
    O'Dwyer MJ, Owen HC, Torrance HD (2015) The perioperative immune response. Curr Opin Crit Care 21:336–342CrossRefGoogle Scholar
  28. 28.
    Arnould JP, Eloy R, Weill-bousson M et al (1977) Resistance et tolerance biologique de 6 protheses inertes utilises dans la reparation de la paroi abdominale. J Chir 113:85–100Google Scholar
  29. 29.
    Di Vita G, Milano S, Frazzetta M, Patti R, Palazzolo V, Barbera C, Ferlazzo V, Leo P, Cillari E (2000) Tension-free hernia repair is associated with an increase in inflammatory response markers against the mesh. Am J Surg 180(3):203–207CrossRefGoogle Scholar
  30. 30.
    Ostergard DR (2010) Polypropylene vaginal mesh grafts in gynecology. Obstet Gynecol 116(4):962–966CrossRefGoogle Scholar
  31. 31.
    Clavé YH, Hammou JC, Montanari S, Gounon P, Clavé H (2010) Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int Urogynecol J 21:261–270CrossRefGoogle Scholar
  32. 32.
    Liebert TC, Chartoff RP, Cosgrove SL, McCuskey RS (1976) Subcutaneous implants of polypropylene filaments. J Biomed Mater Res 10:939–951CrossRefGoogle Scholar
  33. 33.
    Imel A, Malmgren T, Dadmun M, Gido S, Mays J (2015) In vivo oxidative degradation of polypropylene pelvic mesh. Biomaterials. 73:131–141CrossRefGoogle Scholar
  34. 34.
    Iakovlev VV, Guelcher SA, Bendavid R (2015) Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients. J Biomed Mater Res B Appl Biomater 105:237–248. CrossRefGoogle Scholar
  35. 35.
    Costello C, Bachman S, Ramshaw B, Grant S (2007) Materials characterisation of explanted polypropylene meshes. J Biomed Mater Res B Appl Biomater 83(1):44–49CrossRefGoogle Scholar
  36. 36.
    Lefranc O, Bayon Y, Montanari S, Gravagna P, Thérin M (2011) Reinforcement materials in soft tissue repair: key parameters controlling tolerance and performance – current and future trends in mesh development. New Tech Genit Prolapse Surg.
  37. 37.
    Thames SF, White JB, Ong KL (2017) The myth: in vivo degradation of polypropylene-based meshes. Int Urogynecol J 28(2):285–297CrossRefGoogle Scholar
  38. 38.
    Schachtrupp AV, Klinge K, Junge R, Rosch RS, Bhardwaj C, Schumpelick V (2003) Individual inflammatory response of human blood monocytes to mesh biomaterials. Br J Surg 90:114–120CrossRefGoogle Scholar
  39. 39.
    Bienvenu J, Monneret G, Fabien N, Revillard JP (2000) The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med 38:267–285CrossRefGoogle Scholar
  40. 40.
    Schraut W, Wendelgass P, Calzada-Wack JC, Frankenberger M, Ziegler-Heitbrock HW (1997) TNF gene expression in monocytes of low and high responder individuals. Cytokine 9:206–211CrossRefGoogle Scholar
  41. 41.
    Schroder J, Kahlke V, Book M, Stuber F (2000) Gender differences in sepsis: genetically determined? Shock 14:307–310CrossRefGoogle Scholar
  42. 42.
    Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E (2000) Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials 21:2033–2044CrossRefGoogle Scholar
  43. 43.
    Chughtai B, Thomas D, Mao J, Eilber K, Anger J, Clemens JQ, Sedrakyan A (2017) Hernia repair with polypropylene mesh is not associated with an increased risk of autoimmune disease in adult men. Hernia. 21(4):637–642. CrossRefGoogle Scholar
  44. 44.
    Chughtai B, Sedrakyan A, Mao J, Eilber KS, Anger JT, Clemens JQ (2017) Is vaginal mesh a stimulus of autoimmune disease? Am J Obstet Gynecol 216(5):495CrossRefGoogle Scholar
  45. 45.
    Al-Qattan MM, Al-Zahrani K, Kfoury H, Al-Qattan NM, Al-Thunayan TA (2016) A delayed foreign body granuloma associated with polypropylene sutures used in tendon transfer. A case report. Int J Surg Case Rep 26:118–120CrossRefGoogle Scholar
  46. 46.
    Al-Qattan MM et al (2015) A delayed allergic reaction to polypropylene suture used in flexor tendon repair: case report. J Hand Surg 40:1377–1381CrossRefGoogle Scholar
  47. 47.
    Cajigas I, Burks SS, Gernsback J, Fine L, Moshiree B, Levi AD (2015) Allergy to Prolene sutures in a Dural graft for Chiari decompression. Case Rep Med:583570Google Scholar
  48. 48.
    Lipworth L, Tarone RE, Friis S, Ye W, Olsen JH, Nyren O, McLaughlin JK (2009) Cancer among Scandinavian women with cosmetic breast implants: a pooled long-term follow-up study. Int J Cancer 124:490–493CrossRefGoogle Scholar
  49. 49.
    Lee IM, Cook NR, Shadick NA, Pereira E, Buring JE (2011) Prospective cohort study of breast implants and the risk of connective-tissue diseases. Int J Epidemiol 40:230–238CrossRefGoogle Scholar

Copyright information

© Royal Academy of Medicine in Ireland 2019

Authors and Affiliations

  • Cillian Clancy
    • 1
    • 2
    Email author
  • Patrick Jordan
    • 1
    • 2
  • Paul F. Ridgway
    • 1
    • 2
  1. 1.Department of SurgeryTallaght University HospitalDublinIreland
  2. 2.Department of SurgeryTrinity College DublinDublinIreland

Personalised recommendations