Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Peeling in Biological and Bioinspired Adhesive Systems

Abstract

Biological adhesives have inspired synthetically manufactured adhesives with novel properties. Peeling-mode failure is critical to understand these systems and achieve optimal performance. The most common models to describe peeling are briefly reviewed, followed by a literature review of all biological adhesive systems in which peeling plays a critical role, including bioinspired synthetic implementations. From this review, two systems emerge as predominantly studied in this context: gecko feet and spider silk adhesives, both of which are discussed in detail. Gecko feet represent a nanostructured adhesive that has been widely studied because of its unique reversible adhesion and self-cleaning properties. Fibrous and permanent spider silk glues used in spider webs and anchors are interesting given their capacity to withstand hurricane winds and catch and store prey.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A.V.P.D. Dillard, eds., Adhesion Science and Engineering: Surfaces, Chemistry and Applications (Annals of Discrete Mathematics) (Amsterdam: Elsevier, 2002).

  2. 2.

    A.M. Smith, eds., Biological Adhesives (Berin: Springer, 2016).

  3. 3.

    K.A. Daltorio, A.D. Horchler, S. Gorb, R.E. Ritzmann, and R.D. Quinn, in 2005 IEEERSJ International Conference on Intelligent and Robotic Systems (IEEE, 2005).

  4. 4.

    A. Asbeck, S. Dastoor, A. Parness, L. Fullerton, N. Esparza, D. Soto, B. Heyneman, and M. Cutkosky, in 2009 IEEE International Conference on Robotics and Automation (IEEE, 2009).

  5. 5.

    C. Menon, N. Lan, and D. Sameoto, Appl. Bionics Biomech. 6, 87 (2009).

  6. 6.

    H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, and F.G. Omenetto, Adv. Mater. 22, 3527 (2010).

  7. 7.

    Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan, and S. Ling, Adv. Funct. Mater. 28, 1805305 (2018).

  8. 8.

    T. Siritientong, A. Angspatt, J. Ratanavaraporn, and P. Aramwit, Pharm. Res. 31, 104 (2013).

  9. 9.

    P. Aramwit, J. Ratanavaraporn, and T. Siritientong, Adv. Skin Wound Care 28, 358 (2015).

  10. 10.

    M.K. Kwak, H.-E. Jeong, and K.Y. Suh, Adv. Mater. 23, 3949 (2011).

  11. 11.

    S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee, and C. Pang, Adv. Mater. 31, 1803309 (2019).

  12. 12.

    V. Slesarenko, N. Kazarinov, and S. Rudykh, Smart Mater. Struct. 26, 035053 (2017).

  13. 13.

    R. Yadav, R. Goud, A. Dutta, X. Wang, M. Naebe, and B. Kandasubramanian, Ind. Eng. Chem. Res. 57, 10832 (2018).

  14. 14.

    Z. Qin, B.G. Compton, J.A. Lewis, and M.J. Buehler, Nat. Commun. 6, 7038 (2015).

  15. 15.

    D.E. Packham, Handbook of Adhesion (Oxford: Wiley-Blackwell, 2005).

  16. 16.

    K. Autumn and J. Puthoff, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 245–280.

  17. 17.

    K. Autumn, J. Exp. Biol. 209, 3569 (2006).

  18. 18.

    N.S. Pesika, Y. Tian, B. Zhao, K. Rosenberg, H. Zeng, P. McGuiggan, K. Autumn, and J.N. Israelachvili, J. Adhes. 83, 383 (2007).

  19. 19.

    N.N. Ashton, C.-S. Wang, and R.J. Stewart, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 107–128.

  20. 20.

    S. Das and A. Ghosh, Indian J. Fibre Text. Res. 34, 31 (2009).

  21. 21.

    J.O. Wolff, M.E. Herberstein, and J.R. Soc, Interface 14, 20160783 (2017).

  22. 22.

    Y. Liu, H. Meng, P.B. Messersmith, B.P. Lee, and J.L. Dalsin, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 345–378.

  23. 23.

    W. Yang, G.P. Zhang, X.F. Zhu, X.W. Li, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 1514 (2011).

  24. 24.

    I. Scholz, W.J.P. Barnes, J.M. Smith, and W. Baumgartner, J. Exp. Biol. 212, 155 (2008).

  25. 25.

    S.N. Gorb, M. Sinha, A. Peressadko, K.A. Daltorio, and R.D. Quinn, Bioinspir. Biomim. 2, S117 (2007).

  26. 26.

    E. Arzt, S. Gorb, and R. Spolenak, Proc. Natl. Acad. Sci. 100, 10603 (2003).

  27. 27.

    W. Federle, E.L. Brainerd, T.A. McMahon, and B. Holldobler, Proc. Natl. Acad. Sci. 98, 6215 (2001).

  28. 28.

    C.J. Clemente and W. Federle, Proc. R. Soc. B Biol. Sci. 275, 1329 (2008).

  29. 29.

    C. Pang, M.K. Kwak, C. Lee, H.E. Jeong, W.-G. Bae, and K.Y. Suh, Nano Today 7, 496 (2012).

  30. 30.

    L. Frantsevich, A. Ji, Z. Dai, J. Wang, L. Frantsevich, and S.N. Gorb, J. Insect Physiol. 54, 818 (2008).

  31. 31.

    P.N.B. Reis, J.A.M. Ferreira, and F. Antunes, Int. J. Adhes. Adhes. 31, 193 (2011).

  32. 32.

    K. Kendall, J. Phys. Appl. Phys. 8, 1449 (1975).

  33. 33.

    K.L. Mittal, Electrocompon. Sci. Technol. 3, 21 (1976).

  34. 34.

    M.D. Thouless and Q.D. Yang, Int. J. Adhes. Adhes. 28, 176 (2008).

  35. 35.

    J.A. Greenwood and J.B.P. Williamson, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295, 300 (1966).

  36. 36.

    L.F.M. da Silva, R.J.C. Carbas, G.W. Critchlow, M.A.V. Figueiredo, and K. Brown, Int. J. Adhes. Adhes. 29, 621 (2009).

  37. 37.

    B.N.J. Persson and M. Scaraggi, J. Chem. Phys. 141, 124701 (2014).

  38. 38.

    L. Brely, F. Bosia, and N.M. Pugno, Bioinspir. Biomim. 13, 026004 (2018).

  39. 39.

    Z.L. Peng and S.H. Chen, Phys. Rev. E 83, 051915 (2011).

  40. 40.

    N. Cañas, M. Kamperman, B. Völker, E. Kroner, R.M. McMeeking, and E. Arzt, Acta Biomater. 8, 282 (2012).

  41. 41.

    Z. Peng and S. Chen, Int. J. Solids Struct. 60–61, 60 (2015).

  42. 42.

    M. Varenberg, A. Peressadko, S. Gorb, and E. Arzt, Appl. Phys. Lett. 89, 121905 (2006).

  43. 43.

    E.M. Moya-Sanz, I. Ivañez, and S.K. Garcia-Castillo, Int. J. Adhes. Adhes. 72, 23 (2017).

  44. 44.

    J. Boss, V. Ganesh, and C. Lim, Compos. Struct. 62, 113 (2003).

  45. 45.

    V.K. Ganesh and T.S. Choo, J. Compos. Mater. 36, 1757 (2002).

  46. 46.

    S. Sun, M. Li, and A. Liu, Int. J. Adhes. Adhes. 41, 98 (2013).

  47. 47.

    Z. Peng and S. Chen, Phys. Rev. E 91, 042401 (2015).

  48. 48.

    Z. Peng and S. Chen, Appl. Phys. Lett. 101, 163702 (2012).

  49. 49.

    B.N.J. Persson, J. Chem. Phys. 118, 7614 (2003).

  50. 50.

    Z. Peng, C. Wang, Y. Yang, and S. Chen, Phys. Rev. E 94, 10 (2016).

  51. 51.

    Z. Peng and S. Chen, Colloids Surf. B Biointerfaces 88, 717 (2011).

  52. 52.

    Z.L. Peng, C. Wang, and S.H. Chen, Colloids Surf. B Biointerfaces 122, 662 (2014).

  53. 53.

    Z. Peng, Y. Yang, and S. Chen, J. Phys. Appl. Phys. 50, 315402 (2017).

  54. 54.

    A. Aggarwal, S. Ramakrishna, and V.K. Ganesh, J. Compos. Mater. 35, 665 (2001).

  55. 55.

    C. Ayranci and J. Carey, Compos. Struct. 85, 43 (2008).

  56. 56.

    J. Tate, A. Kelkar, and J. Whitcomb, Int. J. Fatigue 28, 1239 (2006).

  57. 57.

    J. Chopin, R. Villey, D. Yarusso, E. Barthel, C. Creton, and M. Ciccotti, Macromolecules 51, 8605 (2018).

  58. 58.

    F. Sosson, A. Chateauminois, and C. Creton, J. Polym. Sci. B Polym. Phys. 43, 3316 (2005).

  59. 59.

    S.E. Naleway, M.M. Porter, J. McKittrick, and M.A. Meyers, Adv. Mater. 27, 5455 (2015).

  60. 60.

    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, and J.R. Soc, Interface 4, 271 (2006).

  61. 61.

    D. Brodoceanu, C.T. Bauer, E. Kroner, E. Arzt, and T. Kraus, Bioinspir. Biomim. 11, 051001 (2016).

  62. 62.

    Z.L. Peng, S.H. Chen, and A.K. Soh, Int. J. Solids Struct. 47, 1952 (2010).

  63. 63.

    S.R. Koebley, F. Vollrath, and H.C. Schniepp, Mater. Horiz. 4, 377 (2017).

  64. 64.

    A. Meyer, N.M. Pugno, S.W. Cranford, and J.R. Soc, Interface 11, 20140561 (2014).

  65. 65.

    N.M. Pugno, S.W. Cranford, and M.J. Buehler, Small 9, 2747 (2013).

  66. 66.

    P.H. Niewiarowski, A.Y. Stark, and A. Dhinojwala, J. Exp. Biol. 219, 912 (2016).

  67. 67.

    N.N. Ashton, D.S. Taggart, and R.J. Stewart, Biopolymers 97, 432 (2011).

  68. 68.

    S.N. Gorb, Am. Entomol. 51, 31 (2005).

  69. 69.

    Z. Yin, A. Dastjerdi, and F. Barthelat, Acta Biomater. 75, 439 (2018).

  70. 70.

    Z. Peng, C. Wang, L. Chen, and S. Chen, Int. J. Solids Struct. 51, 4596 (2014).

  71. 71.

    L. He, J. Lou, S. Kitipornchai, J. Yang, and J. Du, Int. J. Solids Struct. 167, 184 (2019).

  72. 72.

    D. Jain, T.A. Blackledge, T. Miyoshi, and A. Dhinojwala, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 303–319.

  73. 73.

    Z. Gu, S. Li, F. Zhang, and S. Wang, Adv. Sci. 3, 1500327 (2016).

  74. 74.

    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, and R.J. Full, Nature 405, 681 (2000).

  75. 75.

    G. Huber, S.N. Gorb, R. Spolenak, and E. Arzt, Biol. Lett. 1, 2 (2005).

  76. 76.

    G. Greco, M.F. Pantano, B. Mazzolai, and N.M. Pugno, Sci. Rep. 9, 5776 (2019).

  77. 77.

    G. Amarpuri, C. Zhang, C. Diaz, B.D. Opell, T.A. Blackledge, and A. Dhinojwala, ACS Nano 9, 11472 (2015).

  78. 78.

    Y. Bouligand, Tissue Cell 4, 189 (1972).

  79. 79.

    A. Bigi, M. Burghammer, R. Falconi, M.H.J. Koch, S. Panzavolta, and C. Riekel, J. Struct. Biol. 136, 137 (2001).

  80. 80.

    E.A. Zimmermann, B. Gludovatz, E. Schaible, N.K.N. Dave, W. Yang, M.A. Meyers, and R.O. Ritchie, Nat. Commun. 4, 2634 (2013).

  81. 81.

    H. Hertz, J. Reine Angew. Math. 92, 156 (1881).

  82. 82.

    M.S. Stanislav and S.N. Gorb, Biological Micro- and Nanotribology (Berlin: Springer, 2001).

  83. 83.

    K.L. Johnson, K. Kendall, and A.D. Roberts, Proc. R. Soc. Math. Phys. Eng. Sci. 324, 301 (1971).

  84. 84.

    B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).

  85. 85.

    V.M. Muller, V.S. Yushchenko, and B.V. Derjaguin, J. Colloid Interface Sci. 77, 91 (1980).

  86. 86.

    R. Spolenak, S. Gorb, H. Gao, and E. Arzt, Proc. R. Soc. Math. Phys. Eng. Sci. 461, 305 (2005).

  87. 87.

    D.H. Kaelble, J. Adhes. 37, 205 (1992).

  88. 88.

    M. Ciccotti, B. Giorgini, D. Vallet, and M. Barquins, Int. J. Adhes. Adhes. 24, 143 (2004).

  89. 89.

    N.M. Pugno, Int. J. Fract. 171, 185 (2011).

  90. 90.

    L. Brely, F. Bosia, S. Palumbo, M. Fraldi, A. Dhinojwala, N.M. Pugno, and J.R. Soc, Interface 16, 20190388 (2019).

  91. 91.

    T. Tang, C.-Y. Hui, N.J. Glassmaker, and J.R. Soc, Interface 2, 505 (2005).

  92. 92.

    A. Jagota and S.J. Bennison, Integr. Comp. Biol. 42, 1140 (2002).

  93. 93.

    K. Autumn, Integr. Comp. Biol. 42, 1081 (2002).

  94. 94.

    B.N.J. Persson and S. Gorb, J. Chem. Phys. 119, 11437 (2003).

  95. 95.

    L. Afferrante, G. Carbone, G. Demelio, and N. Pugno, Tribol. Lett. 52, 439 (2013).

  96. 96.

    M.R. Begley, R.R. Collino, J.N. Israelachvili, and R.M. McMeeking, J. Mech. Phys. Solids 61, 1265 (2013).

  97. 97.

    J.A. Williams and J.J. Kauzlarich, Tribol. Int. 38, 951 (2005).

  98. 98.

    M. Zhou, Y. Tian, N. Pesika, H. Zeng, J. Wan, Y. Meng, and S. Wen, J. Adhes. 87, 1045 (2011).

  99. 99.

    C. Derail, A. Allal, G. Marin, and P. Tordjeman, J. Adhes. 61, 123 (1997).

  100. 100.

    Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, and J. Israelachvili, Proc. Natl. Acad. Sci. 103, 19320 (2006).

  101. 101.

    G. Huber, S. Gorb, N. Hosoda, R. Spolenak, and E. Arzt, Acta Biomater. 3, 607 (2007).

  102. 102.

    A.N. Gent and R.P. Petrich, Proc. R. Soc. Math. Phys. Eng. Sci. 310, 433 (1969).

  103. 103.

    A.N. Gent and A.J. Kinloch, J. Polym. Sci. Part-2 Polym. Phys. 9, 659 (1971).

  104. 104.

    K. Autumn, J. Exp. Biol. 209, 260 (2006).

  105. 105.

    G. Haiat and E. Barthel, Langmuir 23, 11643 (2007).

  106. 106.

    A.Y. Stark and C.T. Mitchell, Integr. Comp. Biol. 59, 214 (2019).

  107. 107.

    K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, and R.J. Full, Proc. Natl. Acad. Sci. 99, 12252 (2002).

  108. 108.

    M.P. Murphy, S. Kim, M. Sitti, and A.C.S. Appl, Mater. Interfaces 1, 849 (2009).

  109. 109.

    J.O. Wolff and S.N. Gorb, Attach. Struct. Adhes. Secret. Arachn. 7, 79 (2016).

  110. 110.

    L. Ge, S. Sethi, L. Ci, P.M. Ajayan, and A. Dhinojwala, Proc. Natl. Acad. Sci. 104, 10792 (2007).

  111. 111.

    H. Lee, B.P. Lee, and P.B. Messersmith, Nature 448, 338 (2007).

  112. 112.

    Y. Mengüç, S.Y. Yang, S. Kim, J.A. Rogers, and M. Sitti, Adv. Funct. Mater. 22, 1246 (2012).

  113. 113.

    B. Soltannia, D. Sameoto, and A.C.S. Appl, Mater. Interfaces 6, 21995 (2014).

  114. 114.

    H. Yi, S.H. Lee, M. Seong, M.K. Kwak, and H.E. Jeong, J. Mater. Chem. B 6, 8064 (2018).

  115. 115.

    J. Lee and R.S. Fearing, Langmuir 24, 10587 (2008).

  116. 116.

    V. Alizadehyazdi, A. Simaite, M. Spenko, and A.C.S. Appl, Mater. Interfaces 11, 8654 (2019).

  117. 117.

    Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, and J.A. Rogers, Adv. Funct. Mater. 26, 2629 (2016).

  118. 118.

    H.C. Schniepp, S.R. Koebley, and F. Vollrath, Adv. Mater. 25, 7028 (2013).

  119. 119.

    F.G. Omenetto and D.L. Kaplan, Science 329, 528 (2010).

  120. 120.

    F. Chen, D. Porter, and F. Vollrath, Acta Biomater. 8, 2620 (2012).

  121. 121.

    J. Zhang, J. Kaur, R. Rajkhowa, J.L. Li, X.Y. Liu, and X.G. Wang, Mater. Sci. Eng. C 33, 3206 (2013).

  122. 122.

    Q. Wang and H.C. Schniepp, ACS Macro Lett. 7, 1364 (2018).

  123. 123.

    S. Roh, A.H. Williams, R.S. Bang, S.D. Stoyanov, and O.D. Velev, Nat. Mater. 18, 1315 (2019).

  124. 124.

    B.D. Opell and M.L. Hendricks, J. Exp. Biol. 210, 553 (2007).

  125. 125.

    B.D. Opell, S.E. Karinshak, and M.A. Sigler, J. Exp. Biol. 216, 3023 (2013).

  126. 126.

    V. Sahni, T.A. Blackledge, and A. Dhinojwala, Nat. Commun. 1, 19 (2010).

  127. 127.

    D. Jain, C. Zhang, L.R. Cool, T.A. Blackledge, C. Wesdemiotis, T. Miyoshi, and A. Dhinojwala, Biomacromol 16, 3373 (2015).

  128. 128.

    V. Sahni, J. Harris, T.A. Blackledge, and A. Dhinojwala, Nat. Commun. 3, 1106 (2012).

  129. 129.

    Y. Guo, Z. Chang, B. Li, Z.-L. Zhao, H.-P. Zhao, X.-Q. Feng, and H. Gao, Appl. Phys. Lett. 113, 103701 (2018).

  130. 130.

    A.O. Krushynska, F. Bosia, M. Miniaci, and N.M. Pugno, New J. Phys. 19, 105001 (2017).

  131. 131.

    M. Miniaci, A. Krushynska, A.B. Movchan, F. Bosia, and N.M. Pugno, Appl. Phys. Lett. 109, 071905 (2016).

  132. 132.

    E. Blasingame, T. Tuton-Blasingame, L. Larkin, A.M. Falick, L. Zhao, J. Fong, V. Vaidyanathan, A. Visperas, P. Geurts, X. Hu, C.L. Mattina, and C. Vierra, J. Biol. Chem. 284, 29097 (2009).

  133. 133.

    K. Singha, S. Maity, and M. Singha, Front. Sci. 2, 92 (2012).

  134. 134.

    I. Özdemir, Acta Mech. 228, 1735 (2017).

  135. 135.

    L. Heepe, D.S. Petersen, L. Tölle, J.O. Wolff, and S.N. Gorb, Bio-inspired Structured Adhesives (Berlin: Springer, 2017), pp. 47–61.

  136. 136.

    J.O. Wolff and S.N. Gorb, Bio-inspired Systems (Berlin: Springer, 2016), pp. 87–93.

  137. 137.

    D.W. Kim, S. Baik, H. Min, S. Chun, H.J. Lee, K.H. Kim, J.Y. Lee, and C. Pang, Adv. Funct. Mater. 29, 1807614 (2019).

  138. 138.

    F. Meng, Q. Liu, X. Wang, D. Tan, L. Xue, and W.J.P. Barnes, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 377, 20190131 (2019).

  139. 139.

    A.K. Dastjerdi and F. Barthelat, J. Mech. Behav. Biomed. Mater. 52, 95 (2015).

  140. 140.

    Y.S. Lin, C.T. Wei, E.A. Olevsky, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 1145 (2011).

  141. 141.

    L.K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S.R. Nutt, P. Zavattieri, and D. Kisailus, Acta Biomater. 10, 3997 (2014).

  142. 142.

    N. Suksangpanya, N.A. Yaraghi, D. Kisailus, and P. Zavattieri, J. Mech. Behav. Biomed. Mater. 76, 38 (2017).

  143. 143.

    M. Cai, A.J. Glover, T.J. Wallin, D.E. Kranbuehl, and H.C. Schniepp, AIP Conf. Proc. 1255, 95 (2010).

  144. 144.

    L.R. Dickinson, D.E. Kranbuehl, and H.C. Schniepp, Surf. Innov. 4, 158 (2016).

  145. 145.

    D.E. Kranbuehl, M. Cai, A.J. Glover, and H.C. Schniepp, J. Appl. Polym. Sci. 122, 3739 (2011).

Download references

Acknowledgements

This work was made possible by funding through the National Science Foundation under Grants Nos. DMR-1352542 and DMR-1905902. The authors would like to acknowledge the large amount of constructive feedback obtained from the reviewers during the reviewing stage of this manuscript.

Author information

Correspondence to Hannes C. Schniepp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skopic, B.H., Schniepp, H.C. Peeling in Biological and Bioinspired Adhesive Systems. JOM (2020). https://doi.org/10.1007/s11837-020-04037-3

Download citation