pp 1–9 | Cite as

Optimization of Spark Plasma Sintering Parameters Using the Taguchi Method for Developing Mg-Based Composites

  • Murad Ali
  • M. A. HusseinEmail author
  • N. Al-Aqeeli
Advanced Manufacturing for Biomaterials and Biological Materials


A magnesium-based metal matrix composite incorporated with 2.5 wt.% TiB2 has been fabricated using spark plasma sintering for the first time. The Taguchi design approach was used to analyze the significant influences of sintering parameters such as the temperature, pressure, and time on the physical and mechanical properties of Mg-based composites. Analysis of variance was used to investigate the effect of each sintering parameter. X-ray diffraction and field-emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy were used for structure and microstructure analysis. Rockwell hardness (HR) and Vickers hardness (HV) were used to evaluate the mechanical properties of the composite. The results showed that, in the case of microhardness, all the sintering parameters were controlling factors, and the sintering temperature was the most significant factor. The maximum values obtained for the densification, Rockwell hardness, and Vickers hardness were 100%, 62.18 HR, and 58.6 HV, respectively.



The authors acknowledge the King Fahd University of Petroleum and Minerals (KFUPM) and Center of Research Excellence in Corrosion for providing the support to conduct this research.

Supplementary material

11837_2019_3997_MOESM1_ESM.pdf (598 kb)
Supplementary material 1 (PDF 598 kb)


  1. 1.
    R. del Campo, B. Savoini, A. Muñoz, M.A. Monge, and G. Garcés, J. Mech. Behav. Biomed. Mater. 39, 238 (2014).CrossRefGoogle Scholar
  2. 2.
    E.P. DeGarmo, J.T. Black, R.A. Kohser, and B.E. Klamecki, Materials and Process in Manufacturing, 9th ed. (Upper Saddle River: Prentice Hall, 1997).Google Scholar
  3. 3.
    G. Garcés, M. Rodríguez, P. Pérez, and P. Adeva, Compos. Sci. Technol. 67, 632 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Ali, M. Hussein, and N. Al-Aqeeli, J. Alloys Compd. 792, 1162 (2019).CrossRefGoogle Scholar
  5. 5.
    S.F. Hassan and M. Gupta, J. Alloys Compd. 345, 246 (2002).CrossRefGoogle Scholar
  6. 6.
    X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X. Miao, J. Biomed. Mater. Res. Part B Appl. Biomater. 99B, 127 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Rashad, F. Pan, M. Asif, J. She, and A. Ullah, J. Magnes. Alloys 3, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta, Mater. Des. 65, 104 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Sankaranarayanan, U. Pranav Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, J. Alloys Compd. 615, 211 (2014).CrossRefGoogle Scholar
  10. 10.
    S.F. Hassan and M. Gupta, Mater. Sci. Eng. A 392, 163 (2005).CrossRefGoogle Scholar
  11. 11.
    S.F. Hassan and M. Gupta, J. Compos. Mater. 41, 2533 (2007).CrossRefGoogle Scholar
  12. 12.
    G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Mater. Charact. 94, 178 (2014).CrossRefGoogle Scholar
  13. 13.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  14. 14.
    W.N. Tang, S.S. Park, and B.S. You, Mater. Des. 32, 3537 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Barrère, T.A. Mahmood, K. de Groot, and C.A. van Blitterswijk, Mater. Sci. Eng. R Rep. 59, 38 (2008).CrossRefGoogle Scholar
  16. 16.
    S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, J. Mech. Behav. Biomed. Mater. 78, 442 (2018).CrossRefGoogle Scholar
  17. 17.
    G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, Am. J. Biomed. Eng. 2, 218 (2013).CrossRefGoogle Scholar
  18. 18.
    M. Hussein, A. Mohamed, and N. Al-Aqeeli, Materials 8, 2749 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Kannan, A. Balamurugan, and S. Rajeswari, Mater. Lett. 57, 2382 (2003).CrossRefGoogle Scholar
  20. 20.
    M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002).CrossRefGoogle Scholar
  21. 21.
    L. Li, J. Gao, and Y. Wang, Surf. Coat. Technol. 185, 92 (2004).CrossRefGoogle Scholar
  22. 22.
    T.H.D. Ong, N. Yu, G.K. Meenashisundaram, B. Schaller, and M. Gupta, Mater. Sci. Eng. C 78, 647 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Umeda, M. Kawakami, K. Kondoh, E.-S. Ayman, and H. Imai, Mater. Chem. Phys. 123, 649 (2010).CrossRefGoogle Scholar
  24. 24.
    M.H. Nai, J. Wei, and M. Gupta, Mater. Des. 60, 490 (2014).CrossRefGoogle Scholar
  25. 25.
    C. Ma, L. Chen, J. Xu, A. Fehrenbacher, Y. Li, F.E. Pfefferkorn, N.A. Duffie, J. Zheng, and X. Li, J. Biomed. Mater. Res. Part B Appl. Biomater. 101B, 870 (2013).CrossRefGoogle Scholar
  26. 26.
    H. Khoshzaban Khosroshahi, F. Fereshteh Saniee, and H.R. Abedi, Mater. Sci. Eng. A 595, 284 (2014).CrossRefGoogle Scholar
  27. 27.
    A.K. Khanra, H.C. Jung, K.S. Hong, and K.S. Shin, Mater. Sci. Eng. A 527, 6283 (2010).CrossRefGoogle Scholar
  28. 28.
    B. Chen, K.-Y. Yin, T.-F. Lu, B.-Y. Sun, Q. Dong, J.-X. Zheng, C. Lu, and Z.-C. Li, J. Mater. Sci. Technol. 32, 858 (2016).CrossRefGoogle Scholar
  29. 29.
    E. Mohammadi Zahrani and M.H. Fathi, Ceram. Int. 35, 2311 (2009).CrossRefGoogle Scholar
  30. 30.
    C.A. Stüpp, G. Szakács, C.L. Mendis, F. Gensch, S. Müller, F. Feyerabend, D. Hotza, M.C. Fredel, and N. Hort, Magnesium Technology (Cham: Springer, 2015), pp. 425–429.Google Scholar
  31. 31.
    M.H. Fathi and E.M. Zahrani, J. Alloys Compd. 475, 408 (2009).CrossRefGoogle Scholar
  32. 32.
    M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Mater. Des. 83, 344 (2015).CrossRefGoogle Scholar
  33. 33.
    Y.F. Zheng, X.N. Gu, Y.L. Xi, and D.L. Chai, Acta Biomater. 6, 1783 (2010).CrossRefGoogle Scholar
  34. 34.
    V.A.R. Henriques, E.T. Galvani, S.L.G. Petroni, M.S.M. Paula, and T.G. Lemos, J. Mater. Sci. 45, 5844 (2010).CrossRefGoogle Scholar
  35. 35.
    S.F. Hassan, Arch. Metall. Mater. 61, 1521 (2016).CrossRefGoogle Scholar
  36. 36.
    P.S. Kumar, K. Ponappa, M. Udhayasankar, and B. Aravindkumar, Arch. Metall. Mater. 62, 1851 (2017).CrossRefGoogle Scholar
  37. 37.
    H. Cay, H. Xu, and Q. Li, Mater. Sci. Eng. A 574, 137 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, and J. Mao, J. Magnes. Alloys 1, 242 (2013).CrossRefGoogle Scholar
  39. 39.
    S.F. Hassan and M. Gupta, Compos. Struct. 72, 19 (2006).CrossRefGoogle Scholar
  40. 40.
    M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).CrossRefGoogle Scholar
  41. 41.
    M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Mater. Des. 87, 693 (2015).CrossRefGoogle Scholar
  42. 42.
    D. Salamon and Z. Shen, Mater. Sci. Eng. A 475, 105 (2008).CrossRefGoogle Scholar
  43. 43.
    B. Yaman and H. Mandal, Mater. Lett. 63, 1041 (2009).CrossRefGoogle Scholar
  44. 44.
    N. Gao, J. Li, D. Zhang, and Y. Miyamoto, J. Eur. Ceram. Soc. 22, 2365 (2002).CrossRefGoogle Scholar
  45. 45.
    M. Omori, Mater. Sci. Eng. A 287, 183 (2000).CrossRefGoogle Scholar
  46. 46.
    N.Q. Cao, D.N. Pham, N. Kai, H.V. Dinh, S. Hiromoto, and E. Kobayashi, Metals (Basel) 7, 358 (2017).CrossRefGoogle Scholar
  47. 47.
    T. Chartier and A. Badev, Handbook of Advanced Ceramics: Chapter 6.5. Rapid Prototyping of Ceramics (Amsterdam: Elsevier, 2013).Google Scholar
  48. 48.
    K. Tee, L. Lu, and M.O. Lai, J. Mater. Process. Technol. 89–90, 513 (1999).CrossRefGoogle Scholar
  49. 49.
    M. Wong and Y.C. Lee, Surf. Coat. Technol. 120–121, 194 (1999).CrossRefGoogle Scholar
  50. 50.
    H.Y. Wang, Q.C. Jiang, Y. Wang, B.X. Ma, and F. Zhao, Mater. Lett. 58, 3509 (2004).CrossRefGoogle Scholar
  51. 51.
    J. Davim and P. Aveiro, Design of Experiments in Production Engineering (Cham: Springer, 2016).CrossRefGoogle Scholar
  52. 52.
    S. Mavruz and R. Oğulata, Fibres Text. East. Eur. 18, 78 (2010).Google Scholar
  53. 53.
    Ö. Küçük, T. Elfarah, S. Islak, and C. Özorak, Metals (Basel) 7, 352 (2017).CrossRefGoogle Scholar
  54. 54.
    P. Sahoo, A. Pratap, and A. Bandyopadhyay, Int. J. Ind. Eng. Comput. 8, 385 (2017).Google Scholar
  55. 55.
    Z. Xiuqing, W. Haowei, L. Lihua, T. Xinying, and M. Naiheng, Mater. Lett. 59, 2105 (2005).CrossRefGoogle Scholar
  56. 56.
    N. Stanford, D. Atwell, A. Beer, C. Davies, and M.R. Barnett, Scr. Mater. 59, 772 (2008).CrossRefGoogle Scholar
  57. 57.
    Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, and N. Hort, Prog. Nat. Sci. Mater. Int. 28, 724 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  2. 2.Center of Research Excellence in CorrosionKing Fahd University of Petroleum and Minerals’(KFUPM)DhahranSaudi Arabia

Personalised recommendations