Advertisement

JOM

pp 1–9 | Cite as

Microstructures and Mechanical Properties of Extruded Mg-Ho-Zn Alloys with Different Ho/Zn Ratios

  • Jiaan LiuEmail author
  • Jie Wang
  • Mengli Yang
  • Xiaoru Zhang
  • Chaojie Che
  • Dongwen Zhou
  • Yonghua Wang
Aluminum and Magnesium: New Alloys and Applications
  • 43 Downloads

Abstract

The microstructures and mechanical properties of as-extruded Mg-Ho-Zn alloys with various Ho/Zn ratios have been investigated. The grain size is refined with increasing Ho addition. The presence of second phase in the alloys, i.e., long-period stacking ordered (LPSO) phase and W-phase, is dependent on the Ho/Zn ratio. The strength of the alloys decreased as the test temperature was increased. Among the experimental alloys, the alloy containing LPSO-phase exhibited the best comprehensive mechanical properties at both room and high temperatures, due to the high plasticity and good thermal stability of the LPSO-phase. Related mechanisms were analyzed via metallographic and fractographic examination and then discussed. A schematic diagram was established to further reflect the different roles of W-phase and LPSO-phase in the fracture behavior of the alloys.

Notes

Acknowledgements

This work is supported by the Science and Technology Project of Education Department of Jilin Province and National Natural Science Foundation of China (Nos. 51201068 and 51705033).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).CrossRefGoogle Scholar
  2. 2.
    J.F. Wang, P.F. Song, S. Gao, X.F. Huang, Z.Z. Shi, and F.S. Pan, Mater. Sci. Eng. A 528, 5914 (2011).CrossRefGoogle Scholar
  3. 3.
    A.A. Luo, Int. Mater. Rev. 49, 14 (2004).CrossRefGoogle Scholar
  4. 4.
    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, J. Mater. Sci. Technol. 31, 1161 (2015).CrossRefGoogle Scholar
  5. 5.
    H.L. Ding, L.F. Liu, S. Kamado, W.J. Ding, and Y. Kojim, J. Alloys Compd. 456, 406 (2008).Google Scholar
  6. 6.
    R. Verma, A. Srinivasan, R. Jayaganthan, S.K. Nath, and S. Goel, Mater. Sci. Eng. A 704, 425 (2017).CrossRefGoogle Scholar
  7. 7.
    J.L. Li, D. Wu, R.S. Chen, and E.H. Han, JOM 71, 2017 (2019).Google Scholar
  8. 8.
    L. Zheng, C.M. Liu, Y.C. Wan, P.W. Yang, and X. Shu, J. Alloys Compd. 509, 8832 (2011).CrossRefGoogle Scholar
  9. 9.
    G.L. Bi, D.Q. Fang, L. Zhao, J.S. Lian, Q. Jiang, and Z.H. Jiang, Mater. Sci. Eng. A 528, 3611 (2011).Google Scholar
  10. 10.
    J.H. Zhang, L.J. Xu, Y.F. Jiao, C. Xu, L. Zhang, S.J. Liu, J. Meng, R.Z. Wu, and M.L. Zhang, Mater. Sci. Eng. A 610, 143 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Mater. Trans. 42, 1172 (2001).CrossRefGoogle Scholar
  12. 12.
    Y. Kawamura and M. Yamasaki, Mater. Trans. 48, 2988 (2007).CrossRefGoogle Scholar
  13. 13.
    L.B. Tong, X.H. Li, and H.J. Zhang, Mater. Sci. Eng. A 563, 183 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Srinivasan, Y. Huang, C.L. Mendis, C. Blawert, K.U. Kainer, and N. Hort, Mater. Sci. Eng. A 595, 233 (2014).CrossRefGoogle Scholar
  15. 15.
    G.L. Bi, D.Q. Fang, W.C. Zhang, J. Sudagar, Q.X. Zhang, J.S. Lian, and Z.H. Jiang, J. Mater. Sci. Technol. 28, 550 (2012).CrossRefGoogle Scholar
  16. 16.
    S.Q. Yin, Z.Q. Zhang, X. Liu, Q.C. Le, Q. Lan, L. Bao, and J.Z. Cui, Mater. Sci. Eng. A 695, 141 (2017).CrossRefGoogle Scholar
  17. 17.
    J.F. Wang, S. Gao, P.F. Song, X.F. Huang, Z.Z. Shi, and F.S. Pan, J. Alloys Compd. 509, 8571 (2011).Google Scholar
  18. 18.
    C.M. Liu, X.R. Zhu, and H.T. Zhou, Phase diagram of magnesium alloys, 2010 (Hunan: Central South University Press, 2006), pp. 24–29.Google Scholar
  19. 19.
    A. Singh, H. Somekawa, and T. Mukai, Scr. Mater. 56, 935 (2007).CrossRefGoogle Scholar
  20. 20.
    D.Q. Li, Q.D. Wang, and W.J. Ding, Rare Metals 30, 131 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Zhang, J.H. Zhang, C. Xu, Y.B. Jing, J.P. Zhuang, R.Z. Wu, and M.L. Zhang, Mater. Lett. 133, 158 (2014).CrossRefGoogle Scholar
  22. 22.
    S.H. Lv, X.L. Lv, F.Z. Meng, Y.W. Li, Q. Duan, and Q. Yang, J. Alloys Compd. 774, 926 (2019).CrossRefGoogle Scholar
  23. 23.
    J.A. Liu, M.L. Yang, X.R. Zhang, D.Q. Fang, C.J. Che, and A.J. Zou, Mater. Charact. 149, 199 (2019).Google Scholar
  24. 24.
    J.F. Wang, P.F. Song, S. Gao, Y.Y. Wei, and F.S. Pan, J. Mater. Sci. 47, 2006 (2012).Google Scholar
  25. 25.
    Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, and J. Hu, Mater. Sci. Eng. A 745, 155 (2019).Google Scholar
  26. 26.
    L. Xiao, G.Y. Yang, J.M. Chen, S.F. Luo, J.H. Li, and W.Q. Jie, Mater. Sci. Eng. A 744, 281 (2019).CrossRefGoogle Scholar
  27. 27.
    N. Tahreen and D.L. Chen, Adv. Eng. Mater. 18, 1986 (2016).CrossRefGoogle Scholar
  28. 28.
    Y.M. Zhu, A.J. Morton, and J.F. Nie, Acta Mater. 58, 2940 (2010).Google Scholar
  29. 29.
    K. Hagihara, N. Yokotani, and Y. Umakoshi, Intermetallics 18, 267 (2010).CrossRefGoogle Scholar
  30. 30.
    Y. Yao, Z.H. Huang, H. Ma, H. Zhang, Z.M. Zhang, C.J. Xu, N. Zhou, M. Kuang, and J.C. Huang, Mater. Sci. Eng. A 747, 21 (2019).CrossRefGoogle Scholar
  31. 31.
    Q.F. Wang, K. Liu, Z.H. Wang, S.B. Li, and W.B. Du, J. Alloys Compd. 602, 36 (2014).CrossRefGoogle Scholar
  32. 32.
    H. Feng, Y. Yang, and H.X. Chang, Mater. Sci. Eng. A 609, 10 (2014).CrossRefGoogle Scholar
  33. 33.
    S.Z. Wu, Y.B. Ma, J.S. Zhang, C.X. Xu, X.F. Niu, and W. Liu, Adv. Eng. Mater. 19, 1600839 (2017).  https://doi.org/10.1002/adem.201600839.CrossRefGoogle Scholar
  34. 34.
    X.H. Shao, Z.Q. Yang, and X.L. Ma, Acta Mater. 58, 4770 (2010).CrossRefGoogle Scholar
  35. 35.
    Z. Leng, J.H. Zhang, H.Y. Li, P.F. Fei, L. Zhang, S.J. Liu, M.L. Zhang, and R.Z. Wu, Mater. Sci. Eng. A 576, 205 (2013).CrossRefGoogle Scholar
  36. 36.
    P. Pérez, M. Eddahbi, S. González, G. Farcés, and P. Adevaa, Scr. Mater. 64, 35 (2011).CrossRefGoogle Scholar
  37. 37.
    J.W. Liu, X.D. Peng, M.L. Li, G.B. Wei, W.D. Xie, and Y. Yang, Mater. Sci. Eng. A 655, 336 (2016).Google Scholar
  38. 38.
    K. Liu, J.H. Zhang, H.Y. Lu, D.X. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng, Mater. Design 31, 217 (2010).Google Scholar
  39. 39.
    Y.F. Jiao, J.H. Zhang, Y.B. Jing, C. Xu, S.J. Liu, L. Zhang, L.J. Xu, M.L. Zhang, and R.Z. Wu, Adv. Eng. Mater. 17, 881 (2015).Google Scholar
  40. 40.
    L.G. Meng, C.F. Fang, P. Peng, S.B. Mi, Q. Zhu, N.P. Li, H. Hao, and X.G. Zhang, Mater. Res. Innov. 18, 18 (2014).CrossRefGoogle Scholar
  41. 41.
    B. Chen, D.L. Lin, X.Q. Zeng, and C. Lu, Mater. Sci. Forum 546–549, 239 (2007).Google Scholar
  42. 42.
    T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi, Mater. Sci. Eng. A 290, 143 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jiaan Liu
    • 1
    Email author
  • Jie Wang
    • 1
  • Mengli Yang
    • 1
  • Xiaoru Zhang
    • 1
  • Chaojie Che
    • 1
  • Dongwen Zhou
    • 1
  • Yonghua Wang
    • 2
  1. 1.Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  2. 2.School of Mechanical and Electric EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations