pp 1–8 | Cite as

Field Emission Damage Modes of Carbon Nanotube Spindt Cathode Arrays

  • Graham P. Sanborn
  • Lake A. Singh
  • Stephan P. Turano
  • Shanmurugan Selvamurugan
  • Mitchell L. R. Walker
  • W. Jud ReadyEmail author
Technical Article


The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, including display technologies and spacecraft propulsion. However, a commercializable, lightweight and internally gated electron source has yet to be realized. Electrical shorting of the gate to the substrate from arcing between electrodes is a common and problematic failure mode for Spindt-type carbon nanotube electron sources, causing catastrophic damage and severely limiting their manufacturability. Other types of damage and degradation include physical damage to the carbon nanotubes and their disconnection from the substrate. This work explores field emission damage and its effects on failure in a uniquely designed Spindt-type carbon nanotube cathode. Eighty samples are fabricated and characterized for field emission performance. Analysis of the tested samples reveals three distinct types of damage to the emission pits.



This work was supported by the Georgia Tech Research Institute and the High-Power Electric Propulsion Laboratory at Georgia Tech. Some of the funding was provided by the US Air Force Space and Missile Systems Center under Contract N00178-06-D-4752-FG01 and DARPA Contract HR0011-07-C-0056 and HR0011-09-C-0142.

Supplementary material

11837_2019_3921_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1917 kb)


  1. 1.
    W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. Thien Binh, and O. Groening, J. Mater. Chem. 14, 933 (2004).CrossRefGoogle Scholar
  2. 2.
    R. Gomer, Field Emission and Field Ionization, 1st ed. (Cambridge: Harvard University Press, 1961), pp. 24–41.Google Scholar
  3. 3.
    J.D. Carey, Philos. Trans. R. Soc. A 361, 2891 (2003).CrossRefGoogle Scholar
  4. 4.
    K.J. Lee, Ph.D, Materials Engineering, Georgia Institute of Technology, Atlanta (1986).Google Scholar
  5. 5.
    A. Loiseau, P. Launois, P. Petit, S. Roche, and J. Salvetat, Understanding Carbon Nanotubes: From Basics to Applications, 1st ed. (Berlin/Heidelberg: Springer, 2006), pp. 217–539.CrossRefGoogle Scholar
  6. 6.
    W.I. Milne, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, S.B. Lee, D.G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J.P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, Diamond Relat. Mater. 12, 422 (2003).CrossRefGoogle Scholar
  7. 7.
    W.A. de Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995).CrossRefGoogle Scholar
  8. 8.
    A.C.Y.V. Gulyaev, Z.J. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, and Y.F. Zakharchenko, in Int. Vac. Microelectron. Conf., 7th, p. 332 (1994).Google Scholar
  9. 9.
    Y. Lan, Y. Wang, and Z.F. Ren, Adv. Phys. 60, 553 (2011).CrossRefGoogle Scholar
  10. 10.
    M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications, 1st ed. (Berlin: Springer, 2001), pp. 371–376.Google Scholar
  11. 11.
    J.-M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W.A. de Heer, J.-P. Salvetat, and L. Forró, Ultramicroscopy 73, 7 (1998).CrossRefGoogle Scholar
  12. 12.
    M. Kaiser, M. Doytcheva, M. Verheijen, and N. de Jonge, Ultramicroscopy 106, 902 (2006).CrossRefGoogle Scholar
  13. 13.
    G. Pirio, P. Legagneux, D. Pribat, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, and W.I. Milne, Nanotechnology 13, 1 (2001).CrossRefGoogle Scholar
  14. 14.
    D.-W. Kim, L.-H. Chen, J.F. AuBuchon, I.-C. Chen, S.-H. Jeong, I.K. Yoo, and S. Jin, Carbon 43, 835 (2005).CrossRefGoogle Scholar
  15. 15.
    C.A. Spindt, J. Appl. Phys. 39, 3504 (1968).CrossRefGoogle Scholar
  16. 16.
    G. Sanborn, S. Turano, P. Collins, and W.J. Ready, App. Phys. A 110, 99 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Sanborn, and W.J. Ready, US Patent 9,058,954 (2013).Google Scholar
  18. 18.
    W.J. Ready, and M.L.R. Walker, US Patent 8,604,681 (2009).Google Scholar
  19. 19.
    Y. Saito, Carbon Nanotube and Related Field Emitters: Fundamentals and Applications, 1st ed. (Weinheim: Wiley-VCH, 2010), pp. 110–356.CrossRefGoogle Scholar
  20. 20.
    Z.L. Wang and C. Hui, Electron Microscopy of Nanotubes, 1st ed. (Boston: Kluwer Academic Publishers, 2003), pp. 191–204.CrossRefGoogle Scholar
  21. 21.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, and D. Tománek, Science 269, 1550 (1995).CrossRefGoogle Scholar
  22. 22.
    S.A. Guerrera, L.F. Velasquez-Garcia, and A.I. Akinwande, IEEE Trans. Electron Devices 59, 2524 (2012).CrossRefGoogle Scholar
  23. 23.
    L.A. Singh, G. Sanborn, S. Turano, M.L.R. Walker, and W.J. Ready, IEEE Trans. Plasma Sci. 43, 95 (2015).CrossRefGoogle Scholar
  24. 24.
    H.S. Uh and S.S. Park, Thin Solid Films 504, 50 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Wu, M. Wyse, D. McClain, N. Thomas, and J. Jiao, Nano Lett. 9, 595 (2009).CrossRefGoogle Scholar
  26. 26.
    C.A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976).CrossRefGoogle Scholar
  27. 27.
    L.T. Williams, V.S. Kumsomboone, W.J. Ready, and M.L.R. Walker, IEEE Trans. Electron Devices 57, 3163 (2011).CrossRefGoogle Scholar
  28. 28.
    C.A. Spindt, C. Holland, and R. Schwoebel, in IEEE Int. Vac. Electron. Conf., 11th, p. 201 (2010).Google Scholar
  29. 29.
    Y. Ohkawa, T. Okumura, K. Iki, H. Okamoto, and S. Kawamoto, J. Vac. Sci. Technol. 37, 022203 (2019).CrossRefGoogle Scholar
  30. 30.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. (Boca Raton: CRC Press, 2003), pp. 2452–2457.Google Scholar
  31. 31.
    S. Wilfert and C. Edelmann, Vacuum 86, 556 (2011).CrossRefGoogle Scholar
  32. 32.
    G. Sanborn, S. Turano, and W.J. Ready, Diamond Relat. Mater. 43, 1 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Georgia Tech Research InstituteAtlantaUSA
  2. 2.The School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlanta USA

Personalised recommendations