Advertisement

JOM

pp 1–7 | Cite as

In Situ Electron Diffraction Investigation of Solid State Synthesis of Co-In2O3 Ferromagnetic Nanocomposite Thin Films

  • Liudmila E. BykovaEmail author
  • Sergey M. Zharkov
  • Victor G. Myagkov
  • Victor S. Zhigalov
  • Gennady S. Patrin
Advanced Characterization of Interfaces and Thin Films
  • 34 Downloads

Abstract

In situ electron diffraction was used to study structural transformations during the formation of Co-In2O3 ferromagnetic nanocomposite thin films in a thermite reaction of In/Co3O4 bilayer thin films. Heating was performed from room temperature to 600°C at a rate of 4°C/min, while simultaneously electron diffraction patterns were recorded at a speed of 4 frames/min. This made it possible to determine the initiation, 185°C, and finishing, 550°C, temperatures of the solid-state synthesis, as well as the change in the phase composition during the thermite reaction. The synthesized Co-In2O3 film nanocomposite contained ferromagnetic cobalt nanoclusters surrounded by an In2O3 layer, with an average size of 20 nm, and had a magnetization of 400 emu/cm3 and a coercivity of 50 Oe at room temperature. The estimate of the effective interdiffusion coefficient of the reaction suggests that the main mechanism for the formation of the Co-In2O3 nanocomposite is diffusion along the grain boundaries and dislocations.

Notes

Acknowledgements

The investigation was conducted under the partial financial support of the Russian Foundation for Basic Research (Grants #18-03-01173 and #19-43-240003).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C.-W. Nan and J. Quanxi, MRS Bull. 40, 719 (2015).  https://doi.org/10.1557/mrs.2015.196.CrossRefGoogle Scholar
  2. 2.
    S. Behrens, Nanoscale 3, 877 (2011).  https://doi.org/10.1039/C0NR00634C.CrossRefGoogle Scholar
  3. 3.
    X. Batlle and A. Labarta, J. Phys. D 35, R15 (2002).  https://doi.org/10.1088/0022-3727/35/6/201.CrossRefGoogle Scholar
  4. 4.
    A.K. Rathore, S.P. Pati, M. Ghosh, A. Roychowdhury, and D. Das, J. Mater. Sci. Mater. Electron. 28, 6950 (2017).  https://doi.org/10.1007/s10854-017-6395-7.CrossRefGoogle Scholar
  5. 5.
    G.-R. Xu, J.-J. Shi, W.-H. Dong, Y. Wen, X.-P. Min, A.-P. Tang, J. Xu, H. Yang, W. Fu, W. Fan, Q. Zhu, and G. Zou, J. Alloys Compds. 630, 266 (2015).  https://doi.org/10.1016/j.jallcom.2015.01.067.CrossRefGoogle Scholar
  6. 6.
    E.B. Dokukin, R.V. Erhan, A.Kh. Islamov, M.E. Dokukin, N.S. Perov, and E.A. Gan’shina, Phys. Status Solidi B 250, 1656 (2013).  https://doi.org/10.1002/pssb.201248379.CrossRefGoogle Scholar
  7. 7.
    R. Goyal, S. Lamba, and S. Annapoorni, Phys. Status Solidi A 213, 1309 (2016).  https://doi.org/10.1002/pssa.201532704.CrossRefGoogle Scholar
  8. 8.
    B. Gokul, P. Saravanan, V.T.P. Vinod, M. Černík, and R. Sathyamoorthy, Powder Technol. 274, 98 (2015).  https://doi.org/10.1016/j.powtec.2015.01.002.CrossRefGoogle Scholar
  9. 9.
    Y. Cao, N. Kobayashi, Y.-W. Zhang, S. Ohnuma, and H. Masumoto, J. Appl. Phys. 122, 133903-1 (2017).  https://doi.org/10.1063/1.5005620.CrossRefGoogle Scholar
  10. 10.
    S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 1 (2018).  https://doi.org/10.1088/1361-6528/aadd75.CrossRefGoogle Scholar
  11. 11.
    Q. Dai, D. Wu, K. Guo, J. Zhang, M. Zhang, R. Cui, and C. Deng, J. Mater. Sci. Mater. Electron. 29, 17333 (2018).  https://doi.org/10.1007/s10854-018-9828-z.CrossRefGoogle Scholar
  12. 12.
    S. Zhou, K. Potzger, J. von Borany, R. Grotzschel, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B 77, 035209-1 (2008).  https://doi.org/10.1103/PhysRevB.77.035209.CrossRefGoogle Scholar
  13. 13.
    P. Satyarthi, S. Ghosh, P. Mishra, B.R. Sekhar, F. Singh, P. Kumar, D. Kanjilal, R.S. Dhaka, and P. Srivastava, J. Magn. Magn. Mater. 385, 318 (2015).  https://doi.org/10.1016/j.jmmm.2015.03.029.CrossRefGoogle Scholar
  14. 14.
    N.R. Panda, S.P. Pati, A. Das, and D. Das, Appl. Surf. Sci. 449, 654 (2017).  https://doi.org/10.1016/j.apsusc.2017.12.003.CrossRefGoogle Scholar
  15. 15.
    E.L. Drezin, Prog. Energy Combust. Sci. 35, 141 (2009).  https://doi.org/10.1016/jpecs.2008.09.001.CrossRefGoogle Scholar
  16. 16.
    Y. Yang, D.-R. Yan, Y.-C. Dong, X.-G. Chen, L. Wang, Z.-H. Chu, J.-X. Zhang, and J.-N. He, J. Alloys Compd. 579, 1 (2013).  https://doi.org/10.1016/j.jallcom.2013.05.045.CrossRefGoogle Scholar
  17. 17.
    A.S. Mukasyan and A.S. Rogachev, Adv. Power Technol. 26, 654 (2015).  https://doi.org/10.1016/j.apt.2015.03.013.CrossRefGoogle Scholar
  18. 18.
    X. Zhou, M. Torabi, J. Lu, R. Shen, and K. Zhang, ACS Appl. Mater. Interfaces 6, 3058 (2014).  https://doi.org/10.1021/am4058138.CrossRefGoogle Scholar
  19. 19.
    A.H. Kinsey, K. Slusarski, S. Sosa, and T.P. Weihs, ACS Appl. Mater. Interfaces 9, 22026 (2017).  https://doi.org/10.1021/acsami.7b03071.CrossRefGoogle Scholar
  20. 20.
    I. Abdallah, J. Zapata, G. Lahiner, B. Warot-Fonrose, J. Cure, Y. Chabal, A. Esteve, and C. Rossi, ACS Appl. Energy Mater. 1, 1762 (2018).  https://doi.org/10.1021/acsaem.8b00296.CrossRefGoogle Scholar
  21. 21.
    J. Zapata, A. Nicollet, B. Julien, G. Lahiner, A. Esteve, and C. Rossi, Combus. Flame 205, 389 (2019).  https://doi.org/10.1016/j.combustflame.2019.04.031.CrossRefGoogle Scholar
  22. 22.
    V.G. Myagkov, I.A. Tambasov, O.A. Bayukov, V.S. Zhigalov, L.E. Bykova, Y.L. Mikhlin, M.N. Volochaev, and G.N. Bondarenko, J. Alloys Compds. 612, 189 (2014).  https://doi.org/10.1016/j.jallcom.2014.05.176.CrossRefGoogle Scholar
  23. 23.
    I.A. Tambasov, K.O. Gornakov, V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, and E.V. Yozhikova, Phys. B 478, 135 (2015).  https://doi.org/10.1016/j.physb.2015.08.054.CrossRefGoogle Scholar
  24. 24.
    L.E. Bykova, V.S. Zhigalov, V.G. Myagkov, M.N. Volochaev, A.A. Matsynin, G.N. Bondarenko, and G.S. Patrin, Phys. Solid State 60, 2072 (2018).  https://doi.org/10.1134/S1063783418100049.CrossRefGoogle Scholar
  25. 25.
    V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, YuL Mikhlin, and G.N. Bondarenko, J. Alloys Compds. 724, 820 (2017).  https://doi.org/10.1016/j.jallcom.2017.07.081.CrossRefGoogle Scholar
  26. 26.
    M.N. Volochaev, S.V. Komogortsev, V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, N.P. Shestakov, D.A. Velikanov, D.A. Smolyakov, A.V. Lukyanenko, V.B. Rachek, Y.Y. Loginov, I.A. Tambasov, and A.A. Matsynin, Phys. Solid State 60, 1425 (2018).  https://doi.org/10.1134/s1063783418070302.CrossRefGoogle Scholar
  27. 27.
    V.G. Myagkov, L.E. Bykova, O.A. Bayukov, V.S. Zhigalov, I.A. Tambasov, S.M. Zharkov, A.A. Matsynin, and G.N. Bondarenko, J. Alloys Compds. 636, 223 (2015).  https://doi.org/10.1016/j.jallcom.2015.02.012.CrossRefGoogle Scholar
  28. 28.
    V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, S.M. Zharkov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, and G.N. Bondarenko, J. Alloys Compds. 665, 197 (2016).  https://doi.org/10.1016/j.jallcom.2015.12.257.CrossRefGoogle Scholar
  29. 29.
    C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, and L.D. Zhang, Adv. Mater. 13, 1330 (2001).  https://doi.org/10.1002/1521-4095(200109)13:17%3c1330::AID-ADMA1330%3e3.0.CO;2-6.CrossRefGoogle Scholar
  30. 30.
    Z.-K. Tang, L.-M. Tang, D. Wang, L.-L. Wang, and K.-Q. Chen, EPL 97, 57006-1 (2012).  https://doi.org/10.1209/0295-5075/97/57006.CrossRefGoogle Scholar
  31. 31.
    X. Meng, L. Tang, and J. Li, J. Phys. Chem. C 114, 17569 (2010).  https://doi.org/10.1021/jp106767n.CrossRefGoogle Scholar
  32. 32.
    R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, JAN 2, 105 (2017).  https://doi.org/10.22606/jan.2017.22003.CrossRefGoogle Scholar
  33. 33.
    N.H. Hong, J. Sakai, N.T. Huong, and V. Brizé, J. Magn. Magn. Mater. 302, 228 (2006).  https://doi.org/10.1016/j.jmmm.2005.09.010.CrossRefGoogle Scholar
  34. 34.
    M.Z. Naik and A.V. Salker, Mater. Res. Innov. 21, 237 (2017).  https://doi.org/10.1080/14328917.2016.1207044.CrossRefGoogle Scholar
  35. 35.
    Z. Li and Y. Dzenis, Talanta 85, 82 (2011).  https://doi.org/10.1016/j.talanta.2011.03.033.CrossRefGoogle Scholar
  36. 36.
    Z. Wang, C. Hou, Q. De, F. Gu, and D. Han, ACS Sens. 3, 468 (2018).  https://doi.org/10.1021/acssensors.7b00896.CrossRefGoogle Scholar
  37. 37.
    S.M. Zharkov, E.T. Moiseenko, R.R. Altunin, N.S. Nikolaeva, V.S. Zhigalov, and V.G. Myagkov, JETP Lett. 99, 405 (2014).  https://doi.org/10.1134/S0021364014070145.CrossRefGoogle Scholar
  38. 38.
    E.T. Moiseenko, R.R. Altunin, and S.M. Zharkov, Phys. Solid State 59, 1233 (2017).  https://doi.org/10.1134/S1063783417060154.CrossRefGoogle Scholar
  39. 39.
    S.M. Zharkov, E.T. Moiseenko, and R.R. Altunin, J. Solid State Chem. 269, 36 (2019).  https://doi.org/10.1016/j.jssc.2018.09.009.CrossRefGoogle Scholar
  40. 40.
    R.R. Altunin, E.T. Moiseenko, and S.M. Zharkov, Phys. Solid State 60, 1413 (2018).  https://doi.org/10.1134/S106378341807003X.CrossRefGoogle Scholar
  41. 41.
    S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, G.M. Zeer, S.N. Varnakov, and S.G. Ovchinnikov, Solid State Phenom. 215, 144 (2014).  https://doi.org/10.4028/www.scientific.net/SSP.215.144.CrossRefGoogle Scholar
  42. 42.
    W.M. Haynes, eds., CRC Handbook of Chemistry and Physics, 97th ed. (Boca Raton: CRC Press, 2016), p. 2670.Google Scholar
  43. 43.
    ADVENT Research Materials Ltd., Oxford, U.K. www.advent-rm.com.
  44. 44.
    Powder Diffraction File (PDF 4+, 2018), Inorganic Phases Database, International Center for Diffraction Data (ICDD), Swarthmore, PA, USA. http://www.icdd.com/products/pdf4.htm
  45. 45.
    H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion Controlled Processes, Vol. 155 (Berlin: Springer, 2007), p. 651.CrossRefGoogle Scholar
  46. 46.
    J.M. Poate, K.N. Tuaaa, and J.W. Meyer, eds., Thin Films-Interdiffusion and Reaction (New York: Wiley, 1978), p. 578.Google Scholar
  47. 47.
    M. Garbrecht, B. Saha, J.L. Schroeder, L. Hultman, and T.D. Sands, Sci. Rep. 7, 46092-1 (2017).  https://doi.org/10.1038/srep46092.CrossRefGoogle Scholar
  48. 48.
    A. Makovec, G. Erdélyi, and D.L. Beke, Thin Solid Films 520, 2362 (2012).  https://doi.org/10.1016/j.tsf.2011.11.013.CrossRefGoogle Scholar
  49. 49.
    G. Molnár, G. Erdélyi, G.A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, and A. Dudás, Vacuum 98, 70 (2013).  https://doi.org/10.1016/j.vacuum.2013.04.015.CrossRefGoogle Scholar
  50. 50.
    D.L. Beke, Yu Kaganovskii, and G.L. Katona, Prog. Mater Sci. 98, 625 (2018).  https://doi.org/10.1016/j.pmatsci.2018.07.001.CrossRefGoogle Scholar
  51. 51.
    A.I. Gusev and A. Rempel, Nanocrystalline Materials (Cambridge: Cambridge International Science, 2004), p. 351. ISBN: 978-1898326267Google Scholar
  52. 52.
    J.H. Fendle, eds., Nanoparticles and Nanostructured Films: Preparation, Characterization, and Applications (Weinheim: Wiley, 2008), p. 488. ISBN 978-3-527-61206-2.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations