Advertisement

JOM

pp 1–6 | Cite as

Mechanism of Selective Precipitation of Molybdenum from Tungstate Solution

  • Luqi Zeng
  • Zhongwei Zhao
  • Guangsheng HuoEmail author
  • Xinqiang Wang
  • Haipeng Pu
Cleaner Manufacturing of Critical Metals
  • 14 Downloads

Abstract

Selective precipitation of molybdenum (Mo) is a widely utilized method for separation of Mo from tungstate solution; however, the corresponding mechanism is still unclear. The aim of the work presented herein is to investigate the effects of the reaction time, temperature, and CuS dose on the precipitation of Mo and characterize the obtained precipitates via powder x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) analyses. The results demonstrate that sulfurized molybdenum (\( {\text{MoS}}_{ 4}^{{ 2 {-}}} \)) can be selectively precipitated as NH4CuMoS4 or Cu2MoS4 on addition of CuS depending on the reaction temperature and CuS dose, and a corresponding reaction mechanism is proposed. Under the optimum conditions of CuS/Mo = 1.5, T = 35°C, and t = 8 h, up to 99% of the Mo was selectively precipitated. The present study elucidates the mechanism of Mo precipitation and provides basic and robust guidelines for separation of Mo from tungstate solution.

Notes

Acknowledgements

This research was supported by the Natural Science Foundation of China (No. 51174232).

References

  1. 1.
    W.-D. Lassner and Erik Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds (Berlin: Springer, 1999).CrossRefGoogle Scholar
  2. 2.
    J. R.L. Trasorras, T.A. Wolfe, W. Knabl, C. Venezia, R. Lemus, E. Lassner, W. Schubert, E. Lüderitz, and H. Wolf, Tungsten, tungsten alloys, and tungsten compounds (2012).Google Scholar
  3. 3.
    T.H. Nguyen and M.S. Lee, Geosyst. Eng. 19, 247 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Li and Z. Zhao, Hydrometallurgy 163, 55 (2016).CrossRefGoogle Scholar
  5. 5.
    Z.-W. Zhao and L.-H. He, Chin. J. Nonferrous Met. 24, 1637 (2014).Google Scholar
  6. 6.
    Y. Li and Z. Zhao, JOM 69, 1920 (2017).CrossRefGoogle Scholar
  7. 7.
    Y.L. Zhongwei Zhao, J. Li, S. Wang, H. Li, M. Liu, and P. Sun, Hydrometallurgy108, 152 (2011).CrossRefGoogle Scholar
  8. 8.
    H.E. Gui-Xiang, H.E. Li-Hua, Z.W. Zhao, X.Y. Chen, L.L. Gao, and X.H. Liu, Trans. Nonferrous Met. Soc. China 23, 3440 (2013).CrossRefGoogle Scholar
  9. 9.
    Z. Zhao, C. Cao, X. Chen, and G. Huo, Hydrometallurgy 108, 229 (2011).CrossRefGoogle Scholar
  10. 10.
    Z. Zhao, L. Gao, C. Cao, J. Li, X. Chen, A. Chen, X. Liu, P. Sun, G. Huo, Y. Li, and H. Li, Metall. Mater. Trans. B Process. Metall. Mater. Process Sci. 43, 1284 (2012).CrossRefGoogle Scholar
  11. 11.
    X. Zhao, Z.W. Zhang, W.G. Chen, X.Y. Cao, C.F. Li, and J.T. Liu, Can. Metall. Q. 52, 358 (2013).CrossRefGoogle Scholar
  12. 12.
    Z. Li, G. Zhang, W. Guan, L. Zeng, L. Xiao, Q. Li, Z. Cao, and X. Lu, Hydrometallurgy 175, 203 (2018).CrossRefGoogle Scholar
  13. 13.
    P.C. Rout, G.K. Mishra, B. Padh, K.R. Suresh, and B. Ramachandra Reddy, Hydrometallurgy 174, 140 (2017).CrossRefGoogle Scholar
  14. 14.
    X.-Y. Lu, G.-S. Huo, and C.-H. Liao, Trans. Nonferrous Met. Soc. China (Engl. Ed.)24, 3008 (2014).Google Scholar
  15. 15.
    Z. Zhao, J. Zhang, X. Chen, X. Liu, J. Li, and W. Zhang, Hydrometallurgy 140, 120 (2013).CrossRefGoogle Scholar
  16. 16.
    Z. Zhao, L. Xiao, F. Sun, G. Huo, and H. Li, Int. J. Refract. Met. Hard Mater. 28, 503 (2010).CrossRefGoogle Scholar
  17. 17.
    C. Huo, Guangsheng, Peng, Q. Song, and X. Lu, Hydrometallurgy147148, 217 (2014).Google Scholar
  18. 18.
    Y.-J. Huo, G.-S., Zhao, Z.-W., Li, H.-G.Sun, and P.-M., Li, Kuangye Gongcheng/Mining Metall. Eng.23, (2003).Google Scholar
  19. 19.
    A. Müller, E. Diemann, R. Jostes, and H. Bögge, Angew. Chemie Int. Ed. Engl. 20, 934 (1981).CrossRefGoogle Scholar
  20. 20.
    J.E. Brule, Y.T. Hayden, K.P. Callaghan, and J.O. Edwards, Cheminform 19, 24 (1988).CrossRefGoogle Scholar
  21. 21.
    G.R. Erickson and B.E. Helz, Geochim. Cosmochim. Acta 64, 1149 (2000).CrossRefGoogle Scholar
  22. 22.
    M.A. Harmer and A.G. Sykes, Inorg. Chem. 19, 2881 (1980).CrossRefGoogle Scholar
  23. 23.
    W.P. Binnie, M.J. Redman, and W.J. Mallio, Inorg. Chem. 9, 1449 (1970).CrossRefGoogle Scholar
  24. 24.
    W. Chen, H. Chen, H. Zhu, Q. Gao, J. Luo, Y. Wang, S. Zhang, K. Zhang, C. Wang, Y. Xiong, Y. Wu, X. Zheng, W. Chu, L. Song, and Z. Wu, Small 10, 4637 (2014).CrossRefGoogle Scholar
  25. 25.
    G.W. Luther, S.M. Theberge, T.F. Rozan, D. Rickard, C.C. Rowlands, and A. Oldroyd, Environ. Sci. Technol. 36, 394 (2002).CrossRefGoogle Scholar
  26. 26.
    J.C.W. Folmer, F. Jellinek, and G.H.M. Calis, J. Solid State Chem. 72, 137 (1988).CrossRefGoogle Scholar
  27. 27.
    S.W. Goh, A.N. Buckley, and R.N. Lamb, Miner. Eng. 19, 204 (2006).CrossRefGoogle Scholar
  28. 28.
    Y. Nakai, I. Sugitani, Y. Nagashima, and K. Niwa, J. Inorg. Nucl. Chem. 40, 789 (1978).CrossRefGoogle Scholar
  29. 29.
    H. Rupp and U. Weser, Bioinorg. Chem. 6, 45 (1976).CrossRefGoogle Scholar
  30. 30.
    J.C.W. Folmer and F. Jellinek, J. Less-Common Met. 76, 153 (1980).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations