Advertisement

JOM

pp 1–6 | Cite as

KF-NaF-AlF3 System: Liquidus Temperature and Phase Transition

  • Hengwei Yan
  • Zhanwei LiuEmail author
  • Wenhui MaEmail author
  • Liqiang Huang
  • Chengzhi Wang
  • Yingxin Liu
Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • 10 Downloads

Abstract

The development of low-temperature aluminum electrolysis makes it possible to reduce energy consumption and greenhouse gas emissions. The KF-NaF-AlF3-based electrolyte is a promising low-temperature electrolyte for aluminum reduction. The liquidus temperatures of KF-NaF-AlF3 electrolytes with a total cryolite ratio (CRt) fixed at 1.3–2.0, and with different concentrations of NaF (with a step change of 5 mol.%), were investigated by the cooling curve method. The results showed that the liquidus temperature of KF-NaF-AlF3 mixtures increases with the increase of the CRt, which has a bigger influence on the liquidus temperature than the traditional NaF-AlF3 electrolyte currently used in aluminum smelters. When the content of NaF is 10–20 mol.%, the curves of the liquidus temperature vs. NaF content reach a peak. When the NaF content ranges from 30 to 40 mol.%, the liquidus temperature is relatively low (695–900°C). The precipitated order of the compounds in molten KF-NaF-AlF3 electrolytes with a CRt of 1.3 is as follows: K2NaAlF6 (or K3AlF6) → Na3Al5F14 → K2NaAl3F12 → KAlF4.

Notes

Acknowledgements

The financial support from NSFC (Project 51764032), State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province (Project KKPT201652009), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48), and the Program for Innovative research team in university of Yunnan province (No. 201808) are acknowledged.

Supplementary material

11837_2019_3909_MOESM1_ESM.pdf (259 kb)
Supplementary material 1 (PDF 259 kb)

References

  1. 1.
    R. Mukhlis, M.A. Rhamdhani, and G. Brooks, in TMS 2010, Annu. Meet. Exhib., Suppl. Proc., 139th, Light Metals, p. 883 (2010).Google Scholar
  2. 2.
    B. Phillips, C.M. Warshaw, and I. Mockrint, J. Am. Ceram. Soc. 49, 631 (1966).CrossRefGoogle Scholar
  3. 3.
    J. Yang, D.G. Gmczyk, C. Wunsch, and J.N. Hryn, in TMS 2007, Annu. Meet. Exhib., Suppl. Proc., Light Metals, p. 537 (2007).Google Scholar
  4. 4.
    A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin, and Y. Zaikov, Metall. Mater. Trans. B42B, 236 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Apisarov, A. Dedyukhin, A. Redkin, O. Tkacheva, and Y. Zaikov, Russ. J. Electrochem. 46, 633 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Apisarov, A. Dedyukhin, A. Redkin, O. Tkacheva, E. Nikolaeva, Y. Zaikov, and P. Tinghaev, in TMS 2009, Annu. Meet. Exhib., Suppl. Proc., Light-Metals, p. 401 (2009).Google Scholar
  7. 7.
    A. Apisarov, A. Dedyukhin, E. Nikolaeva, P. Tinghaev, O. Tkacheva, A. Redkin, and Y. Zaikov, in TMS 2010, Annu. Meet. Exhib., Suppl. Proc., Light-Metals, p. 395 (2010).Google Scholar
  8. 8.
    J. Wang, Y. Lai, Z. Tian, J. Li, and Y. Liu, TMS 2008, Annu. Meet. Exhib., Suppl. Proc., Light Metals, p. 513 (2008).Google Scholar
  9. 9.
    H. Yan, J. Yang, W. Li, and S. Chen, Metall. Mater. Trans. 42B, 1065 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Yang, W. Li, H. Yan, and D. Liu, in TMS 2010, Annu. Meet. Exhib., Suppl. Proc., Light Metals, p. 689 (2013).Google Scholar
  11. 11.
    H. Yan, J. Yang, and W. Li, J. Chem. Eng. Data 56, 4147 (2011).CrossRefGoogle Scholar
  12. 12.
    S.D. Kirik, Y.N. Zaitseva, D.Y. Leshok, A.S. Samoilo, P.S. Dubinin, I.S. Yakimov, D.A. Simakov, and A.O. Gusev, Inorg. Chem. 54, 5960 (2015).CrossRefGoogle Scholar
  13. 13.
    A.S. Samoilo, Y.N. Zaitseva, P.S. Dubinin, O.E. Piksina, S.G. Ruzhnikov, I.S. Yakimov, and S.D. Kirik, J. Solid State Chem. 252, 1 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Yan, J. Yang, Z. Liu, C. Wang, and W. Ma, Metall. Mater. Trans. 49B, 2071 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Solheim, and Å. Sterten, in Proceedings of Ninth International Symposium on Light Metals Production, p. 225 (1997).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.National Engineering Laboratory for Vacuum MetallurgyKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  4. 4.Zhengzhou Non-ferrous Metals Research Institute of CHALCO Co. Ltd.ZhengzhouPeople’s Republic of China

Personalised recommendations