Advertisement

JOM

pp 1–10 | Cite as

Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile Butadiene Styrene Composites

  • Sunil BhandariEmail author
  • Roberto A. Lopez-Anido
  • Lu Wang
  • Douglas J. Gardner
ICME-Based Design and Optimization for Additive Manufacturing
  • 39 Downloads

Abstract

This research extends the existing classical lamination theory based finite element (FE) models to predict elasto-plastic and bimodular behavior of 3D printed composites with orthotropic material properties. Short carbon fiber reinforced acrylonitrile butadiene styrene was selected as the 3D printing material. Material characterization of a 3D printed unidirectional laminate was carried out using mechanical tests. A bimodular material model was implemented using explicit FE analysis to predict the tension and bending behavior of a 3D printed laminate. The results of the FE model predictions were experimentally validated. Hill’s yield function was effective at predicting the elasto-plastic stress–strain behavior of the laminate in tension. In bending, bimodular material behavior along with Hill’s yield function worked reasonably well in predicting the elasto-plastic bending of the laminate. The material model proposed can be used to predict the mechanical behavior of 3D printed parts with complex geometry under complex loading and boundary conditions.

Notes

Acknowledgments

Funding for this research was provided by the Transportation Infrastructure Durability Center at the University of Maine under grant 69A3551847101 from the U.S. Department of Transportation’s University Transportation Centers Program, the Harold W. Alfond Graduate Research Assistantship and the Malcolm G. Long ‘32 Professorship in Civil Engineering.

References

  1. 1.
    X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, Compos. B 110, 442 (2017).CrossRefGoogle Scholar
  2. 2.
  3. 3.
    P. Kulkarni and D. Dutta, J. Eng. Ind. 121, 93 (1999). https://doi.org/10.1115/1.2830582.CrossRefGoogle Scholar
  4. 4.
    J.F. Rodríguez, J.P. Thomas, and J.E. Renaud, J. Mech. Des 125, 546 (2003).CrossRefGoogle Scholar
  5. 5.
    F. Yang and R. Pitchumani, Macromolecules 35, 3213 (2002).CrossRefGoogle Scholar
  6. 6.
    G. Alaimo, S. Marconi, L. Costato, and F. Auricchio, Compos. B 113, 371 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Timoshenko, Strength of Materials, Part II: Advanced theory and problems, (Van Nostrand Reinhold, 1958), pp 1-510.Google Scholar
  8. 8.
    C.W. Bert and C.J. Rebello, Eng. Str. 5, 227 (1983).CrossRefGoogle Scholar
  9. 9.
    R.M. Jones, AIAA J. 15, 16 (1977).CrossRefGoogle Scholar
  10. 10.
    N. Phan-Thien, Fibre Sci. Technol. 14, 191 (1981). https://doi.org/10.1016/0015-0568(81)90011-7.CrossRefGoogle Scholar
  11. 11.
    C. Ziemian, M. Sharma and S. Ziemian, in Mechanical Engineering, InTechOpen, (2012) https://doi.org/10.5772/34233.Google Scholar
  12. 12.
    Y. Song, Y. Li, W. Song, K. Yee, K.Y. Lee, and V.L. Tagarielli, Mater. Des. 123, 154 (2017).CrossRefGoogle Scholar
  13. 13.
    J.-Y. Sun, H.-Q. Zhu, S.-H. Qin, D.-L. Yang, and X.-T. He, J. Mat. Sci. Technol. 24, 1845 (2010). https://doi.org/10.1007/s12206-010-0601-3.CrossRefGoogle Scholar
  14. 14.
    C. Bert, J. Eng. Mater. Technol. 99, 344 (1977).CrossRefGoogle Scholar
  15. 15.
    S. Ambartsumyan and A.A. Khachatryan, Mekhanika Tverdogo Tela 2, 44 (1986).Google Scholar
  16. 16.
    M.E. Babeshko and Y.N. Shevchenko, Intl. Appl. Mech. 43, 1208 (2007).CrossRefGoogle Scholar
  17. 17.
    M. Shi, Y. Zhang, L. Cheng, Z. Jiao, W. Yang, J. Tan, and Y. Ding, J. Phys. Chem. B. 120, 10018–10029 (2016).CrossRefGoogle Scholar
  18. 18.
    W. Zhang, C. Cotton, J. Sun, D. Heider, B. Gu, B. Sun, and T.-W. Chou, Compos. B 137, 51 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Somireddy, C.V. Singh, and A. Czekanski, Exp. Mech. 59, 871 (2019).CrossRefGoogle Scholar
  20. 20.
    M. Destrade, M.D. Gilchrist, J.A. Motherway, and J.G. Murphy, Mech. Mater. 42, 469 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Bhandari and R. Lopez-Anido, Prog. Addit. Manuf. 4, 143 (2018). https://doi.org/10.1007/s40964-018-0070-2.CrossRefGoogle Scholar
  22. 22.
    S. Bhandari and R. Lopez-Anido, Addit. Manuf. 22, 187 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Guessasma, S. Belhabib, H. Nouri, and O. Ben Hassana, Eur. Polym. J. 85, 324 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Nouri, S. Guessasma, and S. Belhabib, J. Mater. Process. Technol. 234, 113 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Guessasma, S. Belhabib, and H. Nouri, Polymers 11, 125 (2019).CrossRefGoogle Scholar
  26. 26.
    N. van de Werken, J. Hurley, P. Khanbolouki, A.N. Sarvestani, A.Y. Tamijani, and M. Tehrani, Compos. B 160, 684 (2019).CrossRefGoogle Scholar
  27. 27.
    Y. Xu, H. Zhang, B. Šavija, S. Chaves Figueiredo, and E. Schlangen, Mater. Des. 162, 143 (2019).CrossRefGoogle Scholar
  28. 28.
    M.C. Somireddy Aleksander, J. Manuf. Mater. Process. 1, 18 (2017). https://doi.org/10.3390/jmmp1020018.CrossRefGoogle Scholar
  29. 29.
    M. Somireddy, A. Czekanski, and C.V. Singh, Mater. Today Commun. 15, 143 (2018).CrossRefGoogle Scholar
  30. 30.
    K.-S. Liu and S.W. Tsai, Compos. Sci. Technol. 58, 1023 (1998).CrossRefGoogle Scholar
  31. 31.
    D. Notta-Cuvier, F. Lauro, and B. Bennani, Int. J. Solids Struct. 66, 140 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Gotsis, C.C. Chamis, and L. Minnetyan, Compos. Sci. Technol. 58, 1137 (1998).CrossRefGoogle Scholar
  33. 33.
    W.W. El-Tahan, G.H. Staab, S.H. Advani, and J.K. Lee, J. Eng. Mech. 115, 963 (1989).CrossRefGoogle Scholar
  34. 34.
    L. Chen, W. Wen, and H. Cui, Sci. China: Technol. Sci. 56, 89 (2012).CrossRefGoogle Scholar
  35. 35.
    L. Zhang, Q. Gao, and H.W. Zhang, Int. J. Mech. Sci. 70, 57 (2013).CrossRefGoogle Scholar
  36. 36.
    L. Zhang, H.W. Zhang, J. Wu, and B. Yan, Acta Mech. Sin. 32, 481 (2015). https://doi.org/10.1007/s10409-015-0517-3.CrossRefGoogle Scholar
  37. 37.
    Z. Du, Y. Zhang, W. Zhang, and X. Guo, Int. J. Solids Struct. 100, 54 (2016).CrossRefGoogle Scholar
  38. 38.
    F. Mollica, M. Ventre, F. Sarracino, L. Ambrosio, and L. Nicolais, Comput. Math. Appl. 53, 209 (2007).CrossRefGoogle Scholar
  39. 39.
    H. Mehdipour, P.P. Camanho, and G. Belingardi, Compos. B 165, 199 (2019).CrossRefGoogle Scholar
  40. 40.
    A. Nanda and T. Kuppusamy, Compos. Struct. 17, 213 (1991).CrossRefGoogle Scholar
  41. 41.
    F. Dunne and N. Petrinic, Introduction to Computational Plasticity, (OUP Oxford illustrated, reprint edn., 2005), pp 143-180.Google Scholar
  42. 42.
    F. Hild and S. Roux, Strain 42, 69 (2006).CrossRefGoogle Scholar
  43. 43.
    C. Niezrecki, P. Avitabile, C. Warren, P. Pingle, M. Helfrick, and E.P. Tomasini, AIP Conf. Proc. 1253, 219 (2010). https://doi.org/10.1063/1.3455461.CrossRefGoogle Scholar
  44. 44.
    A. Młyniec and T. Uhl, Proc. Inst. Mech. Eng. Part C 226, 16 (2011). https://doi.org/10.1177/0954406211411552.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Advanced Structures and Composites CenterUniversity of MaineOronoUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of MaineOronoUSA
  3. 3.School of Forest ResourcesUniversity of MaineOronoUSA

Personalised recommendations