Advertisement

JOM

pp 1–10 | Cite as

Improving Strength and Formability of Rolled AZ31 Sheet by Two-Step Twinning Deformation

  • Qingshan Yang
  • Bin JiangEmail author
  • Bo SongEmail author
  • Jianyue Zhang
  • Fusheng Pan
Emerging Mechanisms for Enhanced Plasticity in Magnesium
  • 55 Downloads

Abstract

The present work aims to improve strength and stretch formability of rolled AZ31 sheet by two-step twinning deformation, i.e., compression (8%) along the rolling direction (RD) and subsequent tension (5%) along RD. A recrystallization annealing was carried out between two twinning deformations to avoid detwinning. It shows that two-step twinning deformation can form strong c-axis//RD texture and generate profuse crossed twin lamellae in each grain. The former can generate a refinement hardening effect to enhance the strength and the latter can contribute to a high stretch formability at room temperature.

Notes

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (51601154, 51701033), the Fundamental Research Funds for the Central Universities (XDJK2019B003), Chongqing Science and Technology Commission (cstc2018jcyjAX0022), and Chongqing Municipal Education Commission (KJQN201901504), National Natural Science Foundation of China (51531002, U1764253).

References

  1. 1.
    H. Zhang, H.Y. Wang, J.G. Wang, J. Rong, M. Zha, C. Wang, P.K. Ma, and Q.C. Jiang, J. Alloys. Compd. 780, 312 (2019).CrossRefGoogle Scholar
  2. 2.
    T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, and N.J. Kim, Nat. Commun. 9, 2522 (2018).CrossRefGoogle Scholar
  3. 3.
    B.-C. Suh, M.-S. Shim, K.S. Shin, and N.J. Kim, Scripta Mater. 84–85, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S. Guo, and R. Xin, J. Mater. Sci. Technol. 35, 2269 (2019).CrossRefGoogle Scholar
  5. 5.
    Q. Yang, Q. Dai, C. Lou, J. Dai, J. Zhang, B. Jiang, and F. Pan, Prog. Nat. Sci. Mater. 29, 231 (2019).CrossRefGoogle Scholar
  6. 6.
    M.H. Yoo, Mater. Trans. A 12, 409 (1981).CrossRefGoogle Scholar
  7. 7.
    L. Wang, M. Cao, W. Cheng, H. Zhang, X. Cao, and E. Mostaed, JOM 70, 2321 (2018).CrossRefGoogle Scholar
  8. 8.
    L. Wang, Z. Zhang, M. Cao, H. Zhang, T. Han, Q. Yang, H. Wang, and W. Cheng, Mater. Res. Express 6, 086595 (2019).CrossRefGoogle Scholar
  9. 9.
    W. Cheng, L. Wang, H. Zhang, and X. Cao, J. Mater. Pro. Tech. 254, 302 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Hyuk Park, S.-G. Hong, and C.S. Lee, Mater. Sci. Eng A 570, 149 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Wang, B. Song, Z. Zhang, H. Zhang, T. Han, X. Cao, H. Wang, and W. Cheng, Materials 11, 1401 (2018).CrossRefGoogle Scholar
  12. 12.
    W. He, Q. Zeng, H. Yu, Y. Xin, B. Luan, and Q. Liu, Mater. Sci. Eng. A 655, 1 (2016).CrossRefGoogle Scholar
  13. 13.
    S.H. Park, S.-G. Hong, and C.S. Lee, Mater. Sci. Eng. A 578, 271 (2013).CrossRefGoogle Scholar
  14. 14.
    S.-G. Hong, S.H. Park, and C.S. Lee, Acta Mater. 58, 5873 (2010).CrossRefGoogle Scholar
  15. 15.
    Z.-Z. Shi, J.-Y. Xu, J. Yu, and X.-F. Liu, J. Alloys Compd. 749, 52 (2018).CrossRefGoogle Scholar
  16. 16.
    B. Song, R. Xin, X. Zheng, G. Chen, and Q. Liu, Mater. Sci. Eng. A 621, 100 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Xin, H. Zhou, G. Wu, H. Yu, A. Chapuis, and Q. Liu, Mater. Sci. Eng. A 639, 534 (2015).CrossRefGoogle Scholar
  18. 18.
    X. Li, P. Yang, L.N. Wang, L. Meng, and F. Cui, Mater. Sci. Eng. A 517, 160 (2009).CrossRefGoogle Scholar
  19. 19.
    Y. Xin, H. Zhou, H. Yu, R. Hong, H. Zhang, and Q. Liu, Mater. Sci. Eng. A 622, 178 (2015).CrossRefGoogle Scholar
  20. 20.
    T.B. Britton, S. Birosca, M. Preuss, and A.J. Wilkinson, Scripta Mater. 62, 639 (2010).CrossRefGoogle Scholar
  21. 21.
    B. Song, R. Xin, G. Chen, X. Zhang, and Q. Liu, Scripta Mater. 66, 1061 (2012).CrossRefGoogle Scholar
  22. 22.
    Q. Yang, B. Jiang, Y. Tian, W. Liu, and F. Pan, Mater. Lett. 100, 29 (2013).CrossRefGoogle Scholar
  23. 23.
    Y. Xin, Y. Zhang, H. Yu, H. Chen, and Q. Liu, Mater. Sci. Eng. A 644, 365 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Xin, X. Zhou, H. Chen, J.-F. Nie, H. Zhang, Y. Zhang, and Q. Liu, Mater. Sci. Eng A 594, 287 (2014).CrossRefGoogle Scholar
  25. 25.
    L. Zhao, Y. Xin, F. Guo, H. Yu, and Q. Liu, Mater. Sci. Eng. A 654, 344 (2016).CrossRefGoogle Scholar
  26. 26.
    S.H. Park, J.H. Lee, Y.-H. Huh, and S.-G. Hong, Scripta Mater. 69, 797 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Cui, Y. Li, Z. Wang, X. Ding, Y. Koizumi, H. Bian, L. Lin, and A. Chiba, Int. J. Plast. 91, 134 (2017).CrossRefGoogle Scholar
  28. 28.
    Y. Cui, Y. Li, Z. Wang, Q. Lei, Y. Koizumi, and A. Chiba, Int. J. Plast. 99, 1 (2017).CrossRefGoogle Scholar
  29. 29.
    Y. Xin, L. Lv, H. Chen, C. He, H. Yu, and Q. Liu, Mater. Sci. Eng. A 662, 95 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.National Engineering Research Center for Magnesium AlloysChongqing UniversityChongqingChina
  3. 3.School of Materials and EnergySouthwest UniversityChongqingChina
  4. 4.School of Engineering TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations