Advertisement

JOM

pp 1–9 | Cite as

A Machine Vision Sensor for Quality Control of Green Anode Paste Material

  • Julien Lauzon-Gauthier
  • Carl DuchesneEmail author
  • Jayson Tessier
Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • 32 Downloads

Abstract

A machine vision sensor was developed for predicting deviations from the optimum amount of pitch in anode formulations using paste texture analysis. It could help operators mitigate the impact of the increasing variability of anode raw materials (coke and pitch). Paste samples were formulated in the laboratory using dry aggregate mixes obtained using two cokes having different properties and various amounts of pitch. These were imaged, formed into small cylindrical anodes, and baked to measure their density. A combination of image texture methods was used for extracting relevant paste textural features. The latter were then used as inputs of partial least squares regression models to predict deviations from the maximum baked density. Good prediction results were obtained. Furthermore, the sensor was able to detect when the paste was at the optimal amount of pitch for both cokes and to measure deviations from it.

Notes

Acknowledgements

The authors acknowledge financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [Grant Numbers RGPIN 261188-2013 and RDCPJ 417576-11], Fonds de Recherche du Québec - Nature et Technologies (FRQNT) through the Aluminium Research Centre – REGAL, and Alcoa Corporation.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11837_2019_3893_MOESM1_ESM.pdf (110 kb)
Supplementary material 1 (PDF 109 kb)

References

  1. 1.
    J.T. Baron, S.A. McKinney, and R.H. Wombles, Light Metals 2009, ed. G. Bearne (Warrendale: TMS, 2009), p. 935.Google Scholar
  2. 2.
    U. Mannweiler, W.K. Fischer, and R.C. Perruchoud, Light Metals 2009, ed. G. Bearne (Warrendale: TMS, 2009), p. 909.Google Scholar
  3. 3.
    L. Edwards, N. Backhouse, H. Darmstadt, and M.-J. Dion, Light Metals 2012, ed. C.E. Suarez (Hoboken: Wiley, 2012), p. 1207.CrossRefGoogle Scholar
  4. 4.
    M.A. Andoh, Y. Kocaefe, D. Kocaefe, D. Bhattacharyay, D. Marceau, and B. Morais, Light Metals 2016, ed. E. Williams (Hoboken: Wiley, 2016), p. 889.Google Scholar
  5. 5.
    D.P. Ziegler, and J. Secasan, U.S. Patent No.: 9,416,458, Issue Date: 16 Aug 2016.Google Scholar
  6. 6.
    G. Léonard, S. Guérard, D. Laroche, J.C. Arnaud, S. Gourmaud, M. Gagnon, M.J. Marie-Chollier, and Y. Perron, Light Metals 2014, ed. J. Grandfield (Hoboken: Wiley, 2014), p. 1269.Google Scholar
  7. 7.
    M. Ben Boubaker, D. Picard, C. Duchesne, J. Tessier, H. Alamdari, and M. Fafard, Light Metals 2017, ed. A.P. Ratvik (Cham: Springer, 2017), p. 1289.CrossRefGoogle Scholar
  8. 8.
    M. Ben Boubaker, D. Picard, C. Duchesne, J. Tessier, H. Alamdari, and M. Fafard, Ultrasonics 89, 126 (2018).CrossRefGoogle Scholar
  9. 9.
    K.L. Hulse, Anode Manufacture: Raw Materials, Formulation and Processing Parameters (Sierre: R&D Carbon Ltd, 2000), pp. 196–200.Google Scholar
  10. 10.
    A.N. Adams, D.E. Coleman, and R.A. Blake, Unpublished research, Alcoa Technical Centre, New Kensington, PA, USA (2007).Google Scholar
  11. 11.
    A.N. Adams, B.J. Racunas, J. Secasan, D.E. Coleman, and R.A. Blake, Unpublished research, Alcoa Technical Centre, New Kensington, PA, USA (2009).Google Scholar
  12. 12.
    J. Lauzon-Gauthier, C. Duchesne, and J. Tessier, Light Metals 2014, ed. J. Grandfield (Hoboken: Wiley, 2014), p. 1123.Google Scholar
  13. 13.
    K. Azari, H. Alamdari, G. Aryanpour, D. Picard, M. Fafard, and A. Adams, Powder Technol. 235, 341 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Azari Dorcheh, Ph.D. Thesis, Université Laval (2013).Google Scholar
  15. 15.
    J. Lauzon-Gauthier, Ph.D. Thesis, Université Laval (2015).Google Scholar
  16. 16.
    G. Van de Wouwer, P. Scheunders, and D. Van Dyck, IEEE Trans. Image Process. 8, 592 (1999).CrossRefGoogle Scholar
  17. 17.
    S.G. Mallat, IEEE Trans. Pattern. Anal. 11, 674 (1989).CrossRefGoogle Scholar
  18. 18.
    R.M. Haralick and K. Shanmugam, IEEE Trans. Syst. Man Cybernet. 6, 610 (1973).CrossRefGoogle Scholar
  19. 19.
    K. Azari, W. Bogoya-Forero, C. Duchesne, and J. Tessier, JOM 69, 1613 (2017).CrossRefGoogle Scholar
  20. 20.
    J.M. Prats-Montalbán, A. de Juan, and A. Ferrer, Chemom. Intell. Lab. Syst. 107, 1 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Duchesne, J.J. Liu, and J.F. MacGregor, Chemom. Intell. Lab. Syst. 117, 116 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Yousefian-Jazi, J.-H. Ryu, S. Yoon, and J.J. Liu, J. Process. Control 24, 1015 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Yoon, H.W. Lee, and J.J. Liu, Ind. Eng. Chem. Res. 52, 12337 (2013).CrossRefGoogle Scholar
  24. 24.
    P. Facco, E. Tomba, M. Roso, M. Modesti, F. Bezzo, and M. Barolo, Chemom. Intell. Lab. Syst. 103, 66 (2010).CrossRefGoogle Scholar
  25. 25.
    D.A. Clausi, Can. J. Remote Sens. 28, 45 (2002).CrossRefGoogle Scholar
  26. 26.
    S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst. 58, 109 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Julien Lauzon-Gauthier
    • 1
    • 2
  • Carl Duchesne
    • 1
    Email author
  • Jayson Tessier
    • 2
  1. 1.Aluminium Research Centre-REGAL, Chemical Engineering DepartmentUniversité LavalQuebecCanada
  2. 2.Alcoa Aluminum Center of ExcellenceDeschambaultCanada

Personalised recommendations