Advertisement

JOM

pp 1–16 | Cite as

Review: Materials Ecosystem for Additive Manufacturing Powder Bed Fusion Processes

  • Behrang PoorganjiEmail author
  • Eric Ott
  • Rajandra Kelkar
  • Andrew Wessman
  • Mahdi Jamshidinia
Technical Article
  • 103 Downloads

Abstract

Additive manufacturing technologies are revolutionizing modern component design across many industries, while leading to an evolution in materials science and engineering. Understanding and controlling the materials ecosystem in additive manufacturing is an essential factor for successful adoption. The relationships among materials chemistry, powder characteristics, processes and final part performance are key and crucial concepts in additive manufacturing technologies. Powder bed fusion (PBF) processes including laser and electron beam melting processes are fundamentally based on controlling the solid-to-liquid and liquid-to-solid phase transformations in each process layer. The powder characteristics, evolution of the microstructure through the additive manufacturing process and subsequent metallurgical post-processing are primarily responsible for material performance. A more comprehensive understanding of aspects such as powder characteristics, liquid- and solid-phase transformations, and the effects of repeated thermal cycling on metallurgical structure development will be required to effectively apply a design-for-additive approach. Numerical modeling and machine learning are among tools that can be used for developing such understanding. This article will provide a review and summary of the materials ecosystem for additive manufacturing powder bed fusion processes.

Notes

References

  1. 1.
    D. Zhang, S. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, and M. Easton, Adv. Eng. Mater. 20, 1700952 (2018).  https://doi.org/10.1002/adem.201700952.CrossRefGoogle Scholar
  2. 2.
    J. Ålgårdh, State-of-the-Art for Additive Manufacturing of Metals, 2016-03898, version 2.1, 22 June 2017, http://www.metalliskamaterial.se/globalassets/3-forskning/rapporter/2016-03898—state-of-the-art-for-additive-manufacturing-of-metals-2_1.pdf.
  3. 3.
    L.E. Murr, Microgr. Microstruct. Anal. 7, 103 (2018).Google Scholar
  4. 4.
    D. Ding, Z. Pan, S. Van Duin, H. Li, and C. Shen, Materials 9, 652 (2016).  https://doi.org/10.3390/ma9080652.CrossRefGoogle Scholar
  5. 5.
    U.E. Klotz, D. Tiberto, and F. Held, Gold Bull. 50, 111 (2017).CrossRefGoogle Scholar
  6. 6.
    M.C. Karia, M. A. Popat, and K. B. Sangani, AIP Conference Proceedings 2017, 1859.Google Scholar
  7. 7.
    K.G. Prashanth and J. Eckert, J. Alloys Compd. 707, 27 (2017).CrossRefGoogle Scholar
  8. 8.
    Z. C. Eckel, J. H. Martin, W. B. Carter, T. A. Schaedler, B. D. Yahata, J. A. Mayer, and J. M. Hundley, TechConnect Briefs, 2018, pp.96-99.Google Scholar
  9. 9.
    J. D. Beadle, Castings. Production Engineering Series. 1971, Palgrave, London, pp. 23-26.Google Scholar
  10. 10.
    J. Smith, W. Xiong, J. Cao, and W.K. Liu, Comput. Mech. 57, 359 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Ghosh, M. Mahmoudi, L. Johnson, A. Elwany, R. Arroyave, and D. Allaire, Model. Simul. Mater. Sci. Eng. 27, 034002 (2019).CrossRefGoogle Scholar
  12. 12.
    A. Klassen, V.E. Forster, V. Juechter, and C. Körner, J. Mater. Process. Technol. 247, 280 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, and D. Raabe, Steel Res. Int., 88, 2017, No. 8, 1600416.Google Scholar
  14. 14.
    C.E. Roberts, Phys. Procedia 83, 909 (2016).CrossRefGoogle Scholar
  15. 15.
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).CrossRefGoogle Scholar
  16. 16.
    M. Awd, J. Tenkamp, M. Hirtler, S. Siddique, M. Bambach, and F. Walther, Materials 11, 17 (2018).CrossRefGoogle Scholar
  17. 17.
    James P. Best, Adv. Eng. Mater. 21, 1801113 (2019).CrossRefGoogle Scholar
  18. 18.
    Q. Jia, P. Rometsch, S. Cao, K. Zhang, A. Huang, and X. Wu, Scr. Mater. 151, 42 (2018).CrossRefGoogle Scholar
  19. 19.
    A.B. Spierings, Mater. Sci. Eng. A 701, 264 (2017).CrossRefGoogle Scholar
  20. 20.
    J. R, Acta Mater. 153, 2018, 35-44.Google Scholar
  21. 21.
    A. J. Plotkowski, O. Rios, S. S. Babu, R. R. Dehoff, R. Ott, Z. C. Sims, N. Sridharan, D. Weiss, and H. B Henderson “Additive Manufacturing Methods Using Aluminum Rare Earth Alloys and Products Made Using Such Methods,” US20180080103A1, March 22, 2018.Google Scholar
  22. 22.
    J. Jue and D. Gu, J. Compos. Mater. 51, 519 (2017).CrossRefGoogle Scholar
  23. 23.
    D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, S. Biamino, D. Ugues, M. Pavese, and P. Fino, Light Metal Alloy Applications, Ed. Waldemar Alfredo Monteiro, 2014, 3-34.Google Scholar
  24. 24.
    D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y.C. Hagedorn, and W. Meiners, Phys. Procedia 56, 108 (2014).CrossRefGoogle Scholar
  25. 25.
    D. Gu, H. Wang, and D. Dai, J. Manuf. Sci. Eng., Feb. 2016, Vol. 138, 021004-1 to 11.Google Scholar
  26. 26.
    J.H. Martin, B.D. Yahata, E.C. Clough, J.A. Mayer, J.M. Hundley, and T.A. Schaedler, MRS Commun. 8, 297 (2018).CrossRefGoogle Scholar
  27. 27.
    Z. Mahbooba, H. West, O. Harrysson, A. Wojcieszynski, R. Dehoff, P. Nandwana, and T. Horn, JOM 69, 472 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Mereddy, JOM 70, 1670 (2018).CrossRefGoogle Scholar
  29. 29.
    B. Buchmayr G. Panzl, A. Walzl, and C. Wallis, Adv. Eng. Mater., 2017, 19, No 4, 1600667.CrossRefGoogle Scholar
  30. 30.
    A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, and A. Orlov, Mater. Lett. 179, 38 (2016).CrossRefGoogle Scholar
  31. 31.
    S. Dadbakhsh, R. Mertens, L. Hao, J.V. Humbeeck, and J.P. Kruth, Adv. Eng. Mater. 21, 1801244 (2019).CrossRefGoogle Scholar
  32. 32.
    H.A. Hegab, Manuf. Rev. 3, 11 (2016).Google Scholar
  33. 33.
    D. Gu, D. Dai, W. Chen, and H. Chen, J. Manuf. Sci. Eng. 138, 081003-1–11.Google Scholar
  34. 34.
    S. Chen, Y. Tong, and P.K. Liaw, Entropy 20, 937 (2018).CrossRefGoogle Scholar
  35. 35.
    B.A. Welk, M. Gibson, and H.L. Fraser, JOM 65, 1021 (2016).CrossRefGoogle Scholar
  36. 36.
    Z. Mahbooba, L. Thorsson, M. Unosson, P. Skoglund, H. West, T. Horn, C. Christopher, E. Vogli, and O. Harrysson, Appl. Mater. Today 11, 264 (2018).CrossRefGoogle Scholar
  37. 37.
    E. Williams and N. Lavery, J. Mater. Process. Technol. 247, 73 (2017).CrossRefGoogle Scholar
  38. 38.
    V. Ocelik, JOM 68, 1810 (2016).CrossRefGoogle Scholar
  39. 39.
    H. Jones, Aluminum 54, 274 (1978).Google Scholar
  40. 40.
    N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, and G. Shi, J. Blackburn, Journal of Materials Science and Technology, 35, 2019Google Scholar
  41. 41.
    A. Zadi-Maad, R. Rohib, and A. Irawan, in Mineral Processing and Technology International Conference 2017, p. 285 (2018)Google Scholar
  42. 42.
    P. E. J. Rivera-Diaz-del-Castillo, and H. Fu, J. Mater. Res., Vol. 33, No 19, Oct14, 2018, p. 2970-2982.CrossRefGoogle Scholar
  43. 43.
    D. Drake, “An approach for defining the key quality characteristics of metal powder for powder bed fusion and directed energy deposition”, Colorado school of mines, 2018, https://stebnerlab.mines.edu/wp-content/uploads/Drake_Key-Quality-Characteristics-of-Metal-Powder-for-Powder-Bed-Fusion-and-Directed-Energy-Deposition-compressed.pdf
  44. 44.
    A. Sutton, Solid Freedom Fabrication 2016, Proceedings of the 27th annual international solid freeform fabrication symposium, 1004–1030.Google Scholar
  45. 45.
    T. Tingskog, Metal Addit. Manuf. 111–119 (2018).Google Scholar
  46. 46.
    I. E. Anderson, and E. M.H. White, R. Dehoff, Current Opinion in Solid State and Material Science, 2018, 8–15.CrossRefGoogle Scholar
  47. 47.
    N. Clark, N. Jones, R. Setchi, and A. Porch, Powder Technol. 327, 536 (2018).CrossRefGoogle Scholar
  48. 48.
    J. Meyer, AMPM Proceeding, 2018, 264Google Scholar
  49. 49.
    T. F. Murphy and C. T. Schade, Additive Manufacturing for the Aerospace Industry, 2019, 99–142.Google Scholar
  50. 50.
    A. Thornton, and J. Saad, J. Clayton, Metal powder report, 1–6.Google Scholar
  51. 51.
    C. K. Sudbrack, B. A. Lerch, T. M. Smith, I. E. Locci, D. L. Ellis, A. C. Thompson, and B. Richards, Proceedings of the 9th international symposium on superalloy 718 and derivatives, 2018, 89–113.Google Scholar
  52. 52.
    S. K. Kennedy, A. M. Dalley, and G. J. Kotyk, Journal of materials engineering and performance, 2019, 728.CrossRefGoogle Scholar
  53. 53.
    S. Vock, B. Kloden, A. Kirchner, T. Weisgarber, and B. Kieback, Progress in additive manufacturing, 2019, 1-15.Google Scholar
  54. 54.
    L. Carter, C. Martin, P. Withers, and M. Attallah, J. Alloys Compd. 615, 338 (2014).CrossRefGoogle Scholar
  55. 55.
    W. E. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, S. A. Khairallah, and A. M. Rubenchik, Applied Physics Reviews, 2015.Google Scholar
  56. 56.
    M. A. Groeber, E. Schwalbach, S. Donegan, K. Chaput, and T. Butler, J. Miller, Materials Science and Engineering 2017, 219.Google Scholar
  57. 57.
    A. Zafari, M.R. Barati, and K. Xia, Mater. Sci. Eng. A 744, 445 (2019).CrossRefGoogle Scholar
  58. 58.
    S. Everton, M. Hirsch, P. Stravroulakis, R. Leach, and A. Clare, Mater. Des. 95, 431 (2016).CrossRefGoogle Scholar
  59. 59.
    S. Goel, M. Ahlfors, F. Bahbou, and S. Joshi, J. Mater. Eng. Perform. 28, 673 (2018).CrossRefGoogle Scholar
  60. 60.
    R. Kelkar, A. Andreaco, E. Ott, and J. Groh, Superalloy 718 and Derivatives 2018, 53-68.Google Scholar
  61. 61.
    J. Smith, W. Xiong W. Yan, S. Lin, P. Cheng, O. L. Kafka, G. J Wagner, J. Cao, and W. K. Liu, Computational Mechanics. 2016 Apr 1;57(4):583-610.zbMATHCrossRefGoogle Scholar
  62. 62.
    W. Yan, S. Lin, O.L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu, E. Ndip-Agbor, and M. Mozaffar, Comput. Mech. 61, 521 (2018).CrossRefGoogle Scholar
  63. 63.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).CrossRefGoogle Scholar
  64. 64.
    C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah, Acta Mater. 96, 72 (2015).CrossRefGoogle Scholar
  65. 65.
    A. Rai, M. Markl, and C. Körner, Comput. Mater. Sci. 124, 37 (2016).CrossRefGoogle Scholar
  66. 66.
    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto, Comput. Mater. Sci. 126, 479 (2017).CrossRefGoogle Scholar
  67. 67.
    M. Francois, A. Sun, W. King, N. Henson, D. Tourret, C. Bronkhorst, N. Carlson, C. Newman, T. Haut, and J. Bakosi, Curr. Opin. Solid State Mater. Sci. 21, 24513 (2017).CrossRefGoogle Scholar
  68. 68.
    L. Parry, I. Ashcroft, and R. Wildman, Addit. Manuf. 12, 1 (2016).CrossRefGoogle Scholar
  69. 69.
    J. Heigel, P. Michaleris, and E. Reutzel, Additive Manufacturing 2015, 9–19CrossRefGoogle Scholar
  70. 70.
    N. Hodge, R. Ferencz, and J. Solberg, Comput. Mech. 54, 33 (2014).MathSciNetCrossRefGoogle Scholar
  71. 71.
    W. Yan, W. Ge, Smith J,Wagner G, F. Lin, and W. K. Liu, In: 26th Annual international symposium on solid freeform fabrication 2015, Austin, TexasGoogle Scholar
  72. 72.
    E. Kundakcioglu, I. Lazoglu, and S. Rawal, Int. J. Adv. Manuf. Technol. 85, 493 (2016).CrossRefGoogle Scholar
  73. 73.
    I. Roberts, C. Wang, R. Esterlein, M. Stanford, and D. Mynors, Int. J. Mach. Tools Manuf. 49, 916 (2019).CrossRefGoogle Scholar
  74. 74.
    J. Smith, W. Xiong, J. Cao, and W.K. Liu, Comput. Mech. 57, 359 (2016).CrossRefGoogle Scholar
  75. 75.
    S. Ghosh, Process modeling for solidification microstructure and transient thermal stresses in laser aided DMD process. Ph.D. thesis, University of Missouri, Rolla (2006)Google Scholar
  76. 76.
    B. Schoinochoritis, D. Chantzis, and K. Salonitis, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231, 96 (2017).CrossRefGoogle Scholar
  77. 77.
    W. Yan, Y. Lian, C. Yu, O. L. Kafka, Z. Liu, W. K. Liu, and G. J. Wagner, Comput. Methods Appl. Mech. Eng. 184-204 (2018).Google Scholar
  78. 78.
    W. K. Liu, P. Cheng, O. L. Kafka, W. Xiong, Z. Liu, Y. Wentao, and J. Smith, InCOMPLAS XIII: proceedings of the XIII International Conference on Computational Plasticity: fundamentals and applications 2015, 23-39Google Scholar
  79. 79.
    P. C. Collins, C. V. Haden, I. Ghamarian, B. J. Hayes, T. Ales, and G. Penso, V. Dixit, JOM. 2014, 1299-309.Google Scholar
  80. 80.
    Y.L. Cun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).CrossRefGoogle Scholar
  81. 81.
    D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, and A. Bolton, Nature 550(7676):354Google Scholar
  82. 82.
  83. 83.
    D. M. Dimiduk, E. A. Holm, and S. R. Niezgoda, Integrating Materials and Manufacturing Innovation. 2018 Sep 1;7(3):157-72.Google Scholar
  84. 84.
    Y. Liu, T. Zhao, W. Ju, and S. Shi, J. Materiomics 3, 159 (2017).CrossRefGoogle Scholar
  85. 85.
    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 1, 112 (2018).CrossRefGoogle Scholar
  86. 86.
    B.L. DeCost, T. Francis, and E.A. Holm, Acta Mater. 133, 30 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.General Electric AdditiveWest ChesterUSA

Personalised recommendations