pp 1–9 | Cite as

Recycling of Spent Lead-Acid Battery for Lead Extraction with Sulfur Conservation

  • Yun Li
  • Shenghai Yang
  • Pekka Taskinen
  • Jing He
  • Yongming Chen
  • Chaobo TangEmail author
  • Ari Jokilaakso
Thermodynamic Modeling of Sustainable Non-Ferrous Metals Production


This study proposed a cleaner pyrometallurgical lead-acid battery (LAB) recycling method for lead extraction and sulfur conservation without an excessive amount of SO2 generation. A reducing atmosphere was introduced to the lead paste recycling system to selectively reduce PbSO4 to PbS. At the same time, PbO and PbO2 components contained in the lead paste were also reduced to metallic Pb. Then, the intermediate PbS further reacted with a sulfur-fixing agent, typically Fe3O4, to generate PbO and FeS. Sulfur was transformed from PbSO4 to PbS and finally conserved as FeS. Thus, SO2 emissions and pollution were significantly eliminated. This work investigated the thermodynamic and experimental feasibility and phase conversion mechanism of this proposed method, the detailed lead extraction and sulfur fixing mechanisms were clarified, and the phase transformation and microstructural evolution processes were characterized. Additionally, a bench experiment of industrial, end-of-life LAB paste was conducted to detect the lead recovery and sulfur fixation efficiency.



This work is supported by the Specialized Research Project of Guangdong Provincial Applied Science and Technology, China (Grant No. 2016B020242001); Hunan Provincial Science Fund for Distinguished Young Scholars, China (Grant No. 2018JJ1044); National Natural Science Foundation of China (Grant Nos. 51234009 and 51604105); SYMMET (Grant No. 211744).


  1. 1.
    X. Tian, Y. Wu, Y. Gong, and T. Zuo, Waste Manag. Res. 33, 986 (2015).CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, Int. J. Electrochem. Sci. 8, 6457 (2013).Google Scholar
  3. 3.
    A.D. Ballantyne, J.P. Hallett, D.J. Riley, N. Shah, and D.J. Payne, R. Soc. Open Sci. 5, 171368 (2018).CrossRefGoogle Scholar
  4. 4.
    R. Prengaman and A. Mirza, Lead-Acid Batteries for Future Automobiles (Amsterdam: Elsevier, 2017), p. 575.CrossRefGoogle Scholar
  5. 5.
    Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, and Y. Zhang, Waste Manag. 64, 190 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Lin and K. Qiu, Waste Manag. 31, 1547 (2011).CrossRefGoogle Scholar
  7. 7.
    T.W. Ellis and A.H. Mirza, J. Power Sources 195, 4525 (2010).CrossRefGoogle Scholar
  8. 8.
    M.A. Kreusch, M.J.J.S. Ponte, H.A. Ponte, N.M.S. Kaminari, C.E.B. Marino, and V. Mymrin, Resour. Conserv. Recycl. 52, 368 (2007).CrossRefGoogle Scholar
  9. 9.
    C.J. Higgins, H.S. Matthews, C.T. Hendrickson, and M.J. Small, Transp. Res. D: Transp. Environ. 12, 103 (2007).CrossRefGoogle Scholar
  10. 10.
    X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen, Chem. Soc. Rev. 47, 7239 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. Li, S. Yang, W. Lin, P. Taskinen, J. He, Y. Wang, J. Shi, Y. Chen, C. Tang, and A. Jokilaakso, Minerals 9, 119 (2019).CrossRefGoogle Scholar
  12. 12.
    E. Kim, J. Roosen, L. Horckmans, J. Spooren, K. Broos, K. Binnemans, K.C. Vrancken, and M. Quaghebeur, Hydrometallurgy 169, 589 (2017).CrossRefGoogle Scholar
  13. 13.
    A. Singh and P. Karandikar, Microsyst. Technol. 23, 2263 (2017).CrossRefGoogle Scholar
  14. 14.
    K. Liu, S. Liang, J. Wang, H. Hou, J. Yang, and J. Hu, ACS Sustain. Chem. Eng. 6, 17333 (2018).CrossRefGoogle Scholar
  15. 15.
    T.J. Van der Kuijp, L. Huang, and C.R. Cherry, Environ. Health 12, 61 (2013).CrossRefGoogle Scholar
  16. 16.
    X. Tian, Y. Wu, P. Hou, S. Liang, S. Qu, M. Xu, and T. Zuo, J. Clean. Prod. 144, 142 (2017).CrossRefGoogle Scholar
  17. 17.
    M.L. Jaeck, Primary and Secondary Lead Processing: Proceedings of the International Symposium on Primary and Secondary Lead Processing, Halifax, Nova Scotia, August 2024, Elsevier, p. 113 (2013).Google Scholar
  18. 18.
    J. Wei, X. Guo, D. Marinova, and J. Fan, J. Clean. Prod. 64, 404 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Sonmez and R. Kumar, Hydrometallurgy 95, 53 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Li, C. Tang, Y. Chen, S. Yang, L. Guo, J. He, and M. Tang, 8th International Symposium on High-Temperature Metallurgical Processing, TMS, San Diego, CA, US, March 2326, Springer, Cham, pp. 767 (2017).Google Scholar
  21. 21.
    L. Ye, C. Tang, Y. Chen, S. Yang, J. Yang, and W. Zhang, J. Clean. Prod. 93, 134 (2015).CrossRefGoogle Scholar
  22. 22.
    B. Toby, J. Appl. Crystallogr. 38, 1040 (2005).CrossRefGoogle Scholar
  23. 23.
    Y. Li, S. Yang, P. Taskinen, J. He, F. Liao, R. Zhu, Y. Chen, C. Tang, Y. Wang, and A. Jokilaakso, J. Clean. Prod. 217, 162 (2019).CrossRefGoogle Scholar
  24. 24.
    Y. Li, Doctoral Thesis, Aalto University, Finland, p. 45 (2019).Google Scholar
  25. 25.
    A. Roine, HSC Chemistry for Windows, vers. 9.2.6, Outotec Research, Pori, Finland, 2019. Accessed 26 Oct 2019.
  26. 26.
    Y. Li, S. Yang, P. Taskinen, Y. Chen, C. Tang, and A. Jokilaakso, Metals 9, 911 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yun Li
    • 1
    • 2
  • Shenghai Yang
    • 1
  • Pekka Taskinen
    • 2
  • Jing He
    • 1
  • Yongming Chen
    • 1
  • Chaobo Tang
    • 1
    Email author
  • Ari Jokilaakso
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Department of Chemical and Metallurgical EngineeringAalto UniversityEspooFinland

Personalised recommendations