Advertisement

JOM

pp 1–10 | Cite as

Microstructure and Hot Corrosion of GH2036 Alloy Treated by Laser Shock Peening

  • Lan Chen
  • Xinzhou ZhangEmail author
  • Shuyuan Gan
Advances in Surface Engineering
  • 22 Downloads

Abstract

The effects of laser shock peening (LSP) on the microstructure, residual stress, microhardness and hot corrosion of GH2036 alloy at high temperature (700°C) were investigated by transmission electron microscopy, x-ray diffraction, Vickers hardness testing and scanning electron microscopy, respectively. The results show that many crystal defects and precipitate phases were induced by LSP. The maximum surface residual compressive stress and micro-hardness of the LSP-treated sample with 9 J of pulse energy were 520 MPa and 275 HV, respectively. The hot corrosion kinetics of GH2036 showed that the sample treated with 9 J of pulse energy recorded the lowest mass loss (3.85 mg/cm2) compared to the untreated sample (11.35 mg/cm2). Higher crystal defects provided the diffusion channels of elements (Fe, Cr, etc.), which facilitated the formation of a denser and more homogeneous oxide layer compared to untreated samples. In addition, the spallation of the oxide layer was obviously alleviated after LSP.

Notes

Acknowledgements

The authors are grateful to the projects supported by the National Natural Science Foundation of China (Grant No. 51479082), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160014), the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. KYZZ16_0331).

References

  1. 1.
    D. Hu and R. Wang, Aircr. Eng. Aerosp. Technol. 85, 4 (2013).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Wang, C. Cho, and J. Nie, (41715), 301 (2004).Google Scholar
  3. 3.
    D. Hu, R. Wang, J. Fan, and X. Shen, Eng. Fract. Mech. 87, 73 (2012).CrossRefGoogle Scholar
  4. 4.
    D. Hu, Q. Yang, H. Liu, J. Mao, F. Meng, Y. Wang, M. Ren, and R. Wang, Int. J. Fatigue 95, 90 (2017).CrossRefGoogle Scholar
  5. 5.
    D. Hu, F. Meng, H. Liu, J. Song, and R. Wang, Int. J. Fatigue 85, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng, Acta Mater. 59, 1014 (2011).CrossRefGoogle Scholar
  7. 7.
    L. Tan, X. Ren, K. Sridharan, and T.R. Allen, Corros. Sci. 50, 2040 (2008).CrossRefGoogle Scholar
  8. 8.
    X.D. Ren, Y.K. Zhang, H.F. Yongzhuo, L. Ruan, D.W. Jiang, T. Zhang, and K.M. Chen, Mater. Sci. Eng., A 528, 2899 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Karthik and S. Swaroop, J. Alloy. Compd. 694, 1309 (2017).CrossRefGoogle Scholar
  10. 10.
    J. Cao, J. Zhang, Y. Hua, R. Chen, and Y. Ye, J. Mater. Process. Technol. 243, 31 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Gencalp Irizalp, N. Saklakoglu, E. Akman, and A. Demir, Opt. Laser Technol. 56, 273 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Lim, P. Kim, H. Jeong, and S. Jeong, J. Mater. Process. Technol. 212, 1347 (2012).CrossRefGoogle Scholar
  13. 13.
    J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang, and Y.K. Zhang, Corros. Sci. 60, 145 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Karthik and S. Swaroop, Mater. Chem. Phys. 193, 147 (2017).CrossRefGoogle Scholar
  15. 15.
    V.K. Caralapatti and S. Narayanswamy, Opt. Laser Technol. 88, 75 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Adu-Gyamfi, X.D. Ren, E.A. Larson, Y. Ren, and Z. Tong, Opt. Laser Technol. 108, 177 (2018).CrossRefGoogle Scholar
  17. 17.
    Z.P. Tong, X.D. Ren, W.F. Zhou, S. Adu-Gyamfi, L. Chen, Y.X. Ye, Y.P. Ren, F.Z. Dai, J.D. Yang, and L. Li, Opt. Laser Technol. 109, 139 (2019).CrossRefGoogle Scholar
  18. 18.
    F. Dai, Z. Zhang, X. Ren, J. Lu, and S. Huang, Opt. Laser Eng. 101, 99 (2018).CrossRefGoogle Scholar
  19. 19.
    X. Chen and H. Cao, Fusion Eng. Des. 129, 253 (2018).CrossRefGoogle Scholar
  20. 20.
    P. Xiao, Y. Gao, F. Xu, S. Yang, B. Li, Y. Li, Z. Huang, and Q. Zheng, J. Alloys Compd. 780, 237 (2019).CrossRefGoogle Scholar
  21. 21.
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, and J.W. Zhong, Acta Mater. 58, 3984 (2010).CrossRefGoogle Scholar
  22. 22.
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, and L. Zhang, Acta Mater. 58, 5354 (2010).CrossRefGoogle Scholar
  23. 23.
    J. Li, C. Zhang, B. Jiang, L. Zhou, and Y. Liu, J. Alloys Compd. 685, 248 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Gao, J.-S. Hou, Y.-A. Guo, and L.-Z. Zhou, Trans. Nonferrous Met. Soc. 28, 1735 (2018).CrossRefGoogle Scholar
  25. 25.
    M.-Z. Ge and J.-Y. Xiang, J. Alloys Compd. 680, 544 (2016).CrossRefGoogle Scholar
  26. 26.
    L. Zhang, Y.K. Zhang, J.Z. Lu, F.Z. Dai, A.X. Feng, K.Y. Luo, J.S. Zhong, Q.W. Wang, M. Luo, and H. Qi, Corros. Sci. 66, 5 (2013).CrossRefGoogle Scholar
  27. 27.
    M.Z. Ge, J.Y. Xiang, and Y.K. Zhang, J. Mater. Eng. 9, 54 (2013).Google Scholar
  28. 28.
    Y. Li, J. Guo, C. Yuan, H. Yang, L. Fang, and X. Liu, J. Chin. Soc. Corros. Prot. 25, 250 (2005).Google Scholar
  29. 29.
    L. Zheng, Z. Maicang, and D. Jianxin, Mater. Des. 32, 1981 (2011).CrossRefGoogle Scholar
  30. 30.
    K. Zhang, M.M. Liu, S.L. Liu, C. Sun, and F.H. Wang, Corros. Sci. 53, 1990 (2011).CrossRefGoogle Scholar
  31. 31.
    G.M. Liu, F. Yu, J.H. Tian, and J.H. Ma, Mater. Sci. Eng., A 496, 40 (2008).CrossRefGoogle Scholar
  32. 32.
    P.S. De, R.S. Mishra, and C.B. Smith, Scr. Mater. 60, 500 (2009).CrossRefGoogle Scholar
  33. 33.
    M. Kattoura, S.R. Mannava, D. Qian, and V.K. Vasudevan, Int. J. Fatigue 102, 121 (2017).CrossRefGoogle Scholar
  34. 34.
    I. Nikitin, I. Altenberger, H.J. Maier, and B. Scholtes, Mater. Sci. Eng., A 403, 318 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations