, Volume 71, Issue 12, pp 4726–4736 | Cite as

Effect of Pre-compression on Microstructure Evolution of AQ80 Magnesium Alloy in Forward Extrusion and Twist Deformation

  • Xiaoye Liu
  • Liwei LuEmail author
  • Kun Sheng
  • Yao Xiang
  • Zhiqiang WuEmail author
Microstructure Evolution During Deformation Processing


A magnesium alloy, Mg-8Al-0.5Zn-0.2Ag-0.2Mn (AQ80), was extruded by forward extrusion and twist deformation (FETD) at 370°C with 0% and 6% pre-compression. The effect of pre-compression on microstructure and texture of the AQ80 Mg alloy during FETD was systematically investigated. Compared with the 0% pre-compression FETD-ed sample, the 6% pre-compression FETD-ed sample shows a more uniform and finer microstructure and a weaker texture. The effects of pre-twinning on the microstructure and texture during FETD were also investigated. It was found that many {10–12} tension twins were implanted into the as-cast AQ80 Mg alloy by the 6% pre-compression treatment, providing sufficient nucleation sites for subsequent dynamic recrystallization. Combined with microstructure evolution analysis, it can be concluded that the texture development is strongly influenced by the twinning and basal slip during FETD extrusion.



This work was partly supported by National Natural Science Foundation of China (Grant Nos. 51975207 & 51728202), Hunan Provincial Natural Science Foundation for Excellent Young Scholars of China (Grant No. 2019JJ30010) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17B089). Special thanks to Zhuoran Zeng at Monash University for the helpful discussion and proofreading.


  1. 1.
    Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Int. Mater. Rev. 64, 27 (2019).Google Scholar
  2. 2.
    G. Chen, X.S. Chang, J.X. Zhang, Y. Jin, C. Sun, Q. Chen, and Z.D. Zhao, Met. Mater. Int. (2019). Scholar
  3. 3.
    Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).Google Scholar
  4. 4.
    Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, and N. Birbilis, Metall. Mater. Trans. A 50, 4344 (2019).Google Scholar
  5. 5.
    S.G. Hong, S.H. Park, and C.S. Lee, Acta Mater. 58, 5873 (2010).Google Scholar
  6. 6.
    Y.P. Wang, F. Li, W.Y. Shi, X.W. Li, and W.B. Fang, Mater. Charact. 155, 109842 (2019).Google Scholar
  7. 7.
    X.Y. Liu, L.W. Lu, K. Sheng, and T. Zhou, Acta Metall. Sin. (Engl. Lett.) 32, 710 (2019).Google Scholar
  8. 8.
    S.Q. Zhu and S.P. Ringer, Acta Mater. 144, 365 (2018).Google Scholar
  9. 9.
    T.G. Langdon, Acta Mater. 61, 7035 (2013).Google Scholar
  10. 10.
    Y. Huang and T.G. Langdon, Mater. Today 16, 85 (2013).Google Scholar
  11. 11.
    F. Akbaripanah, F.F. Saniee, R. Mahmudi, and H.K. Kim, Mater. Sci. Eng. A 565, 308 (2013).Google Scholar
  12. 12.
    M.A. Maharbi, I. Karaman, I.J. Beyerlein, D. Foley, K.T. Hartwig, L.J. Kecskes, and S.N. Mathaudhu, Mater. Sci. Eng. A 528, 7616 (2011).Google Scholar
  13. 13.
    X. Li, T.A. Samman, and G. Gottstein, Mater. Lett. 65, 1907 (2011).Google Scholar
  14. 14.
    Y. Beygelzimera, D. Prilepoa, R. Kulagina, V. Grishaeva, O. Abramovaa, V. Varyukhina, and M. Kulakov, J. Mater. Process Technol. 211, 522 (2011).Google Scholar
  15. 15.
    V. Varyukhin, Y. Beygelzimer, S. Synkov, and D. Orlov, Mater. Sci. Forum 503, 335 (2004).Google Scholar
  16. 16.
    U.M. Iqbal, V.S.S. Kumar, and S. Gopalakannan, Measurement 94, 126 (2016).Google Scholar
  17. 17.
    G. Chen, Y. Jin, H.M. Zhang, F. Han, Q. Chen, J.R. Xu, and Z.D. Zhao, Mater. Sci. Eng. A 724, 181 (2018).Google Scholar
  18. 18.
    Y. Chino, K. Sassa, and M. Mabuchi, Scr. Mater. 59, 399 (2008).Google Scholar
  19. 19.
    H. Zendehdel and A. Hassani, Mater. Des. 37, 13 (2012).Google Scholar
  20. 20.
    M. Berta, D. Orlov, and P.B. Prangnell, Int. J. Mater. Res. 98, 200 (2007).Google Scholar
  21. 21.
    M.I. Abd El Aal, H.Y. Um, E.Y. Yoon, and H.S. Kim, Mater. Sci. Eng. A 625, 252 (2015).Google Scholar
  22. 22.
    Y. Yuan, A. Ma, X. Gou, J. Jiang, F. Lu, D. Song, and Y. Zhu, Mater. Sci. Eng. A 630, 45 (2015).Google Scholar
  23. 23.
    M. Nouri, H.M. Semnani, E. Emadoddin, and H.S. Kim, Measurement 127, 115 (2018).Google Scholar
  24. 24.
    D. Hou, T. Liu, D. Shi, H.C. Chen, and H.B. Chen, Mater. Sci. Eng. A 653, 108 (2016).Google Scholar
  25. 25.
    D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z. Horita, Mater. Sci. Eng. A 519, 105 (2009).Google Scholar
  26. 26.
    V.Q. Vu, O. Prokof’eva, L.S. Toth, V. Usov, N. Shkatulyak, Y. Estrin, R. Kulagin, V. Varyukhin, and Y. Beygelzimer, Mater. Charact. 153, 215 (2019).Google Scholar
  27. 27.
    V. Varyukhin, Y. Beygelzimer, S. Synkov, and D. Orlov, Mater. Sci. Eng. A 503, 14 (2009).Google Scholar
  28. 28.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and M. Haghshenas, J. Alloy. Compd. 475, 126 (2009).Google Scholar
  29. 29.
    H.J. Hu, Y.L. Ying, Z.W. Ou, and X.Q. Wang, Mater. Sci. Eng. A 695, 360 (2017).Google Scholar
  30. 30.
    M.G. Jiang, H. Yan, and R.S. Chen, J. Alloy Compd. 650, 399 (2015).Google Scholar
  31. 31.
    H.B. Chen, T.M. Liu, L.W. Lu, J.J. He, and Y.B. Zhai, Trans. Nonferrous Met. Soc. China 25, 3604 (2015).Google Scholar
  32. 32.
    B. Song, N. Guo, T.T. Liu, and Q.S. Yang, Mater. Des. 62, 352 (2014).Google Scholar
  33. 33.
    L.P. Zhong, Y.J. Wang, H. Luo, C.S. Luo, and J. Peng, J. Alloy Compd. 775, 707 (2019).Google Scholar
  34. 34.
    D. Sarker and D.L. Chen, Scr. Mater. 67, 165 (2012).Google Scholar
  35. 35.
    Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Acta Mater. 59, 812 (2011).Google Scholar
  36. 36.
    N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth, Acta Mater. 59, 5989 (2011).Google Scholar
  37. 37.
    L. Chen, J.X. Zhang, J.W. Tang, G.J. Chen, G.Q. Zhao, and C.S. Zhang, J. Mater. Process Technol. 259, 346 (2018).Google Scholar
  38. 38.
    Y.C. Xin, H. Zhou, G.L. Wu, H.H. Yu, A. Chapuis, and Q. Liu, Mater. Sci. Eng. A 639, 534 (2015).Google Scholar
  39. 39.
    L.W. Lu, X.Y. Liu, D.F. Shi, M. Ma, and Z.C. Wang, JOM 71, 1566 (2019).Google Scholar
  40. 40.
    M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, and B.H. Lu, Acta Mater. 157, 53 (2018).Google Scholar
  41. 41.
    O. Muránsky, D.G. Carr, P. Šittner, and E.C. Oliver, Int. J. Plast 25, 1107 (2009).Google Scholar
  42. 42.
    D.K. Guan, W.R. Rainforth, L. Ma, B. Wynne, and J.H. Gao, Acta Mater. 126, 132 (2017).Google Scholar
  43. 43.
    S.H. Choi, D.W. Kim, B.S. Seong, and A.D. Rollett, Int. J. Plast. 27, 1702 (2011).Google Scholar
  44. 44.
    M.G. Jiang, H. Yan, and R.S. Chen, Mater. Des. 87, 891 (2015).Google Scholar
  45. 45.
    T. Bhattacharjee, T. Nakata, T. Sasaki, S. Kamado, and K. Hono, Scr. Mater. 90–91, 37 (2014).Google Scholar
  46. 46.
    S. Yi, H.G. Brokmeier, and D. Letzig, J. Alloy. Compd. 506, 364 (2010).Google Scholar
  47. 47.
    J.L. Li, D. Wu, R.S. Chen, and E.H. Han, Acta Mater. 159, 31 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut MaterialHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  3. 3.Hunan Provincial Overseas-Wisdom Innovation Center of New Energy Vehicle in Industrial-Academic-Research CooperationHunan University of Science and TechnologyXiangtanPeople’s Republic of China

Personalised recommendations