Advertisement

JOM

, Volume 71, Issue 12, pp 4537–4546 | Cite as

Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries

  • Seyedeh Nooshin Banitaba
  • Dariush SemnaniEmail author
  • Elahe Heydari-Soureshjani
  • Behzad Rezaei
  • Ali Asghar Ensafi
Functional Nanomaterials for Energy Applications

Abstract

In this study, thin electrospun solvent-free electrolytes based on polyethylene oxide (PEO) incorporated with silicon dioxide (SiO2), aluminum oxide (Al2O3) and clay nanoparticles were prepared and characterized. Lithium perchlorate and ethylene carbonate were used as salt and plasticizer, respectively. The morphological properties were investigated using scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy and x-ray diffraction patterns. The obtained results confirmed an increment of the fraction of free ions and amorphous regions by incorporation of the fillers into the electrospun electrolytes. Introduction of the fillers into the PEO matrix significantly improved the ion conductivity. The highest ion conductivities of 0.033 mS cm−1, 0.059 mS cm−1 and 0.016 mS cm−1 were obtained by the addition of SiO2, Al2O3 and clay nanoparticles into the as-spun electrolytes, respectively. The electrospun electrolytes showed superior ion conductivities compared with polymeric electrolytes synthesized through a standard solution-casting method. In addition, the activation energy decreased with the addition of fillers into the electrospun fibres. The as-spun electrolytes displayed low cycling durability. Furthermore, tensile properties implied that tensile strength could be improved by loading an optimum ratio of the fillers. This investigation presents the great potential of electrospun membranes as electrolytes applicable for solid-state lithium-ion batteries.

Notes

Supplementary material

11837_2019_3810_MOESM1_ESM.pdf (672 kb)
Supplementary material 1 (PDF 671 kb)

References

  1. 1.
    J.W. Fergus, J. Power Sources 195, 4554 (2010).CrossRefGoogle Scholar
  2. 2.
    W.H. Meyer, J. Adv. Mater. 10, 439 (1998).CrossRefGoogle Scholar
  3. 3.
    R. Agrawal and G. Pandey, J. Phys. D 41, 223001 (2008).CrossRefGoogle Scholar
  4. 4.
    M.Z.A. Munshi, Solid polymer electrolytes, ed: Google Patents, 2003.Google Scholar
  5. 5.
    J.-M. Tarascon and M. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Song, Y. Wang, and C.C. Wan, J. Power Sources 77, 183 (1999).CrossRefGoogle Scholar
  7. 7.
    Z. Xue, D. He, and X. Xie, J. Mater. Chem. A 3, 19218 (2015).CrossRefGoogle Scholar
  8. 8.
    R. M. Formato, R. F. Kovar, P. Osenar, N. Landrau, and L. S. Rubin, Composite solid polymer electrolyte membranes, ed: Google Patents, 2001.Google Scholar
  9. 9.
    M. Armand, Solid State Ionics 9, 745 (1983).CrossRefGoogle Scholar
  10. 10.
    Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, and P.G. Bruce, Nature 412, 520 (2001).CrossRefGoogle Scholar
  11. 11.
    S. Chung, K. Such, W. Wieczorek, and J. Stevens, J. Polym. Sci. B 32, 2733 (1994).CrossRefGoogle Scholar
  12. 12.
    M.A. Ratner and D.F. Shriver, Chem. Rev. 88, 109 (1988).CrossRefGoogle Scholar
  13. 13.
    M. Jacob, S. Prabaharan, and S. Radhakrishna, Solid State Ionics 104, 267 (1997).CrossRefGoogle Scholar
  14. 14.
    A.M. Stephan and K. Nahm, Polym. J. 47, 5952 (2006).CrossRefGoogle Scholar
  15. 15.
    W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, and H.-W. Lee, et al., Nano Lett. 15, 2740 (2015).CrossRefGoogle Scholar
  16. 16.
    F. Yuan, H.-Z. Chen, H.-Y. Yang, H.-Y. Li, and M. Wang, Mater. Chem. Phys. 89, 390 (2005).CrossRefGoogle Scholar
  17. 17.
    S.S. Zhang, J. Power Sources 162, 1379 (2006).CrossRefGoogle Scholar
  18. 18.
    W. Wieczorek, Z. Florjanczyk, and J. Stevens, Electrochim. Acta 40, 2251 (1995).CrossRefGoogle Scholar
  19. 19.
    E.M. Masoud, Polym. Test. 56, 65 (2016).CrossRefGoogle Scholar
  20. 20.
    E.M. Masoud, A.-A. El-Bellihi, W.A. Bayoumy, and E.A. Mohamed, J. Mol. Liq. 260, 237 (2018).CrossRefGoogle Scholar
  21. 21.
    E.M. Masoud, M.E. Hassan, S.E. Wahdaan, S.R. Elsayed, and S.A. Elsayed, Polym. Test. 56, 277 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Wimalaweera, V. Seneviratne, and M. Dissanayake, Procedia Eng. 215, 109 (2017).CrossRefGoogle Scholar
  23. 23.
    N. Byrne, J. Efthimiadis, D. MacFarlane, and M. Forsyth, J. Mater. Chem. 14, 127 (2004).CrossRefGoogle Scholar
  24. 24.
    Y. Yap, A. You, L. Teo, and H. Hanapei, Int. J. Electrochem. Sci. 8, 2154 (2013).Google Scholar
  25. 25.
    L. Fan, C.-W. Nan, and S. Zhao, Solid State Ionics 164, 81 (2003).CrossRefGoogle Scholar
  26. 26.
    Y. Ma, L. Li, G. Gao, X. Yang, and Y. You, Electrochim. Acta 187, 535 (2016).CrossRefGoogle Scholar
  27. 27.
    C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, and H. Ardebili, Nano Lett. 12, 1152 (2012).CrossRefGoogle Scholar
  28. 28.
    H.W. Chen, C.Y. Chiu, and F.C. Chang, J. Polym. Sci. B 40, 1342 (2002).CrossRefGoogle Scholar
  29. 29.
    E.M. Masoud, Ionics 25, 2645 (2019).CrossRefGoogle Scholar
  30. 30.
    S.N. Banitaba, D. Semnani, B. Rezaei, and A.A. Ensafi, Polym. Int. 68, 746 (2019).CrossRefGoogle Scholar
  31. 31.
    K. Freitag, P. Walke, T. Nilges, H. Kirchhain, R. Spranger, and L. van Wüllen, J. Power Sources 378, 610 (2018).CrossRefGoogle Scholar
  32. 32.
    K.M. Freitag, H. Kirchhain, L.V. Wüllen, and T. Nilges, Inorg. Chem. 56, 2100 (2017).CrossRefGoogle Scholar
  33. 33.
    S. N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, and A. A. Ensafi, Mater. Res. Express, (2019)Google Scholar
  34. 34.
    S. N. Banitaba, D. Semnani, B. Rezaei, and A. A. Ensafi, Polym. Adv. Technol., (2019).Google Scholar
  35. 35.
    D. Hambali, Z. Zainuddin, I. SUPA, and Z. Osman, Sains Malays. 45, 1697 (2016).Google Scholar
  36. 36.
    M.R. Johan, O.H. Shy, S. Ibrahim, S.M.M. Yassin, and T.Y. Hui, Solid State Ionics 196, 41 (2011).CrossRefGoogle Scholar
  37. 37.
    A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, and P. Zapata, et al., J. Appl. Sci. 7, 49 (2017).CrossRefGoogle Scholar
  38. 38.
    C. Drew, X. Wang, L.A. Samuelson, and J. Kumar, J. Macromol. Sci. A 40, 1415 (2003).CrossRefGoogle Scholar
  39. 39.
    A. Arya and A. Sharma, J. Phys. D 50, 443002 (2017).CrossRefGoogle Scholar
  40. 40.
    C. Bhatt, R. Swaroop, A. Arya, and A. Sharma, J. Mater. Sci. Eng. B 5, 418 (2015).Google Scholar
  41. 41.
    J.O. Kweon and S.T. Noh, J. Appl. Polym. Sci. 81, 2471 (2001).CrossRefGoogle Scholar
  42. 42.
    W. Liu, Multilayer Composite Solid Electrolytes for Lithium Ion Batteries, Dissertations (2016).Google Scholar
  43. 43.
    H.R. Pant, M.P. Bajgai, K.T. Nam, Y.A. Seo, D.R. Pandeya, and S.T. Hong, et al., J. Hazard. Mater. 185, 124 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations