Advertisement

JOM

, Volume 71, Issue 12, pp 4562–4568 | Cite as

Synthesis of Micro-encapsulated Phase Change Materials Using Chain Transfer Agent via Emulsion Polymerization and Their Chemical, Optical, and Thermal Characterization

  • Ayeon Jang
  • Youngkyun Jung
  • Ung Su Choi
  • Jonghyun Kim
  • Jiyoung Chang
  • Sun ChoiEmail author
Functional Nanomaterials for Energy Applications
  • 103 Downloads

Abstract

Microencapsulated phase change materials (MPCMs) are materials that store thermal energy, and emulsion polymerization is the preferred encapsulation method for their synthesis because it is economical and simple. In this work, we used the emulsion method to synthesize two different MPCMs, i.e., poly methyl methacrylate (PMMA) PCMs and PMMA-1-dodecanethiol (DDT) PCMs, by using 1-dodecanethiol as the chain transfer agent. To explore the effect of the chain transfer agent, the two MPCMs were characterized chemically, physically, and thermally by Fourier transform-infrared spectroscopy, optical microscopy, scanning electron microscopy, and differential scanning calorimetry. The analyses showed that 1-dodecanethiol promoted the uniform formation of spherical MPCMs by enhancing the stability of the oil–water interface of the emulsions. Also, 1-dodecanethiol was not included in the structures of the MPCMs, and it did not affect the thermal properties of the MPCMs, such as heat capacity and melting point, which demonstrated that the 1-dodecanethiol acted only as a surfactant.

Notes

Acknowledgements

This work was supported by the Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E29700), the University of Utah’s Science Technology and Research Initiative’s (USTAR’s) shared facilities, and the Materials Research, Science, and Engineering Center (MRSEC) Program at the University of Utah of the NSF under Award No. DMR-1121252.

References

  1. 1.
    E. Oró, A. de Gracia, A. Castell, M.M. Farid, and L.F. Cabeza, Appl. Energy 99, 513 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, Renew. Sustain. Energy Rev. 13, 318 (2009).CrossRefGoogle Scholar
  3. 3.
    B. Zalba, J.M. Marín, L.F. Cabeza, and H. Mehling, Appl. Therm. Eng. 3, 251 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Hassan, M. Shakeel Laghari, Y. Rashid, A. Hassan, M. Shakeel Laghari, and Y. Rashid, Sustainability 8, 1046 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Pomianowski, P. Heiselberg, and Y. Zhang, Energy Build. 67, 56 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Ushak, M.J. Cruz, L.F. Cabeza, and M. Grágeda, Mater. (Basel, Switzerland) 9, 24 (2016).CrossRefGoogle Scholar
  7. 7.
    P.B. Salunkhe and P.S. Shembekar, Renew. Sustain. Energy Rev. 16, 5603 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Su, J. Darkwa, and G. Kokogiannakis, Renew. Sustain. Energy Rev. 48, 373 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Özonur, M. Mazman, H.Ö. Paksoy, and H. Evliya, Int. J. Energy Res. 30, 741 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Konuklu, M. Ostry, H.O. Paksoy, and P. Charvat, Energy Build. 106, 134 (2015).CrossRefGoogle Scholar
  11. 11.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, and S. Al-Hallaj, Energy Convers. Manag. 45, 1597 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Giro-Paloma, M. Martínez, L.F. Cabeza, and A.I. Fernández, Renew. Sustain. Energy Rev. 53, 1059 (2016).CrossRefGoogle Scholar
  13. 13.
    H. Wang, L. Zhao, G. Song, G. Tang, and X. Shi, Sol. Energy Mater. Sol. Cells 175, 102 (2018).CrossRefGoogle Scholar
  14. 14.
    R. Al-Shannaq, M. Farid, M. Dickinson, and S. Behzadi, Microencapsulation of phase change materials for thermal energy storage in building application (Publishing Engineers Australia, 2012) https://search.informit.com.au/documentSummary;dn=865174363200091;res=IELENG. Accessed 24 June 2019.
  15. 15.
    Y. Konuklu, H.O. Paksoy, and M. Unal, Appl. Energy 150, 335 (2015).CrossRefGoogle Scholar
  16. 16.
    C. Alkan, A. Sarı, A. Karaipekli, and O. Uzun, Sol. Energy Mater. Sol. Cells 93, 143 (2009).CrossRefGoogle Scholar
  17. 17.
    C. Alkan, A. Sari, and O. Uzun, AIChE J. 52, 3310 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Akat, M.A. Tasdelen, F. Du Prez, and Y. Yagci, Eur. Polym. J. 44, 1949 (2008).CrossRefGoogle Scholar
  19. 19.
    R.L. Harbron, T.O. Mcdonald, S.P. Rannard, P.H. Findlay, and J.V.M. Weaver, Chem. Commun. 48, 1592 (2012).CrossRefGoogle Scholar
  20. 20.
    M.F. Cunningham and T. Witty, Polym. React. Eng. 11, 519 (2003).CrossRefGoogle Scholar
  21. 21.
    Y. Fang, S. Kuang, X. Gao, and Z. Zhang, J. Phys. D Appl. Phys. 42, 35407 (2009).CrossRefGoogle Scholar
  22. 22.
    A. Sarı, C. Alkan, and A. Karaipekli, Appl. Energy 87, 1529 (2010).CrossRefGoogle Scholar
  23. 23.
    K. Min, M. Silberstein, and N.R. Aluru, J. Polym. Sci. Part B Polym. Phys. 52, 444 (2014).CrossRefGoogle Scholar
  24. 24.
    R. Al-Shannaq, M. Farid, S. Al-Muhtaseb, and J. Kurdi, Sol. Energy Mater. Sol. Cells 132, 311 (2015).CrossRefGoogle Scholar
  25. 25.
    P. Felix De Castro and D.G. Shchukin, Chem. A Eur. J. 21, 11174 (2015).CrossRefGoogle Scholar
  26. 26.
    B.J. Park, J.H. Sung, K.S. Kim, I. Chin, and H.J. Choi, J. Macromol. Sci. Part B. 45, 53 (2006).CrossRefGoogle Scholar
  27. 27.
    G. Vijayakumari, N. Selvakumar, K. Jeyasubramanian, and R. Mala, Phys. Procedia 49, 67 (2013).CrossRefGoogle Scholar
  28. 28.
    G. Sahoo, N. Sarkar, D. Sahu, and S.K. Swain, RSC Adv. 7, 2137 (2017).CrossRefGoogle Scholar
  29. 29.
    I. De Girmenci, S. Eren, V. Aviyente, B. De Sterck, K. Hemelsoet, V. Van Speybroeck, and M. Waroquier, Macromolecules 43, 5602 (2010).CrossRefGoogle Scholar
  30. 30.
    T. Furuncuoğlu, I. Uğur, I. Değirmenci, and V. Aviyente, Macromolecules 43, 1823 (2010).CrossRefGoogle Scholar
  31. 31.
    D. Zhao, X. Jiao, Y. Zhang, D. An, X. Shi, X. Lu, G. Qiu, and K.J. Shea, RSC Adv. 5, 96067 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Chaiyasat, A. Chaiyasat, W. Boontung, S. Promdsorn, and S. Thipsit, Mater. Sci. Appl. 2, 1007 (2011).Google Scholar
  33. 33.
    J.C. Gomez, High-temperature phase change materials (PCM) candidates for thermal energy storage (TES) applications, vol. 303 (National Renewable Energy Laboratory (NREL), 2011), p. 1.Google Scholar
  34. 34.
    Docosane 99%| Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/product/aldrich/134457?lang=ko&region=KR. Accessed 05 Jun 2019.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Environment, Health, and Welfare Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.National Agenda Research DivisionKorea Institute of Science and TechnologySeoulRepublic of Korea
  3. 3.Division of Energy and Environment TechnologyKorea University of Science and Technology (UST)DaejeonRepublic of Korea
  4. 4.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations