Advertisement

JOM

pp 1–9 | Cite as

Clean Recycling Process for Lead Oxide Preparation from Spent Lead–Acid Battery Pastes Using Tartaric Acid–Sodium Tartrate as a Transforming Agent

  • Zhen Ouyang
  • Shefen Liu
  • Yujie Hu
  • Longgang YeEmail author
Extraction and Recycling of Battery Materials
  • 16 Downloads

Abstract

A clean recycling process for waste lead–acid battery paste was proposed, where tartaric acid-sodium tartrate mixed solution was used as the transforming agent. First, lead tartrate [Pb(C4H4O6)] was prepared by the reaction of paste and the transforming agent, and then it was calcined to obtain lead oxide powder. The lead recovery rate and desulfurization rate were 97.55% and 99.02%, respectively. In addition, pure lead tartrate was obtained with a narrow particle size distribution. Next, the thermal behavior of lead tartrate was investigated, and the results show that it rapidly decomposed into PbO in air and remained stable until 800°C. However, in an argon atmosphere, the weight loss rate approached that of metallic lead generation. The study of the calcination of lead tartrate in air and argon atmospheres showed that the main product was a PbO and Pb mixture; however, the product morphologies were different. Ultra-fine lead oxide particles with a particle size < 100 nm were obtained by calcining in an argon atmosphere. With increasing calcination temperature, more metallic lead was formed. The main advantages of this process are the use of a clean and non-toxic transforming agent and the direct production of ultra-fine lead oxide through calcination.

Notes

Acknowledgements

This project was supported financially by the National Natural Science Foundation of China (Grant No. 51604105), for which the authors are grateful. We also acknowledge the helpful comments and suggestions of the anonymous reviewers.

References

  1. 1.
    X. Tian, Y. Gong, Y.F. Wu, A. Agyeiwaa, and T.Y. Zuo, Resour. Conserv. Recycl. 93, 75 (2014).CrossRefGoogle Scholar
  2. 2.
    D.N. Wilson, JOM 58, 24 (2006).CrossRefGoogle Scholar
  3. 3.
    X. Tian, Y. Gong, Y.F. Wu, and T.Y. Zuo, Waste Manag. Res. 33, 986 (2015).CrossRefGoogle Scholar
  4. 4.
    S.G. Ji, C.R. Cherry, M. Bechle, and Y. Wu, Environ. Sci. Technol. 46, 2018 (2012).CrossRefGoogle Scholar
  5. 5.
    A.D. Ballantyne, J.P. Hallett, D.J. Riley, N. Shah, and D.J. Payne, R. Soc. 5, 1 (2018).Google Scholar
  6. 6.
    H. Pan, Y. Geng, H.J. Dong, M. Ali, and S.J. Xiao, Resour. Conserv. Recycl. 140, 13 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Agrawal, K.K. Sahu, and B.D. Pandey, Waste Manag. Res. 22, 240 (2004).CrossRefGoogle Scholar
  8. 8.
    L.C. Ferracin, A.E. Chacon-Sanhueza, R.A. Davoglio, L.O. Rocha, D.J. Caffeu, A.R. Fontanetti, R.C. Rocha-Filho, S.R. Biaggio, and N. Bocchi, Hydrometallurgy 65, 137 (2002).CrossRefGoogle Scholar
  9. 9.
    Q. Wang, W. Liu, X. Yuan, H.R. Tang, Y.Z. Tang, M.S. Wang, J. Zuo, Z.L. Song, and J. Sun, J. Clean. Prod. 174, 1262 (2018).CrossRefGoogle Scholar
  10. 10.
    L.G. Chen, Z.C. Xu, M. Liu, Y.M. Huang, R.F. Fan, Y.H. Su, G.C. Hu, X.W. Peng, and X.C. Peng, Sci. Total Environ. 429, 191 (2012).CrossRefGoogle Scholar
  11. 11.
    Z. Sun, H.B. Cao, X.H. Zhang, X. Lin, W.W. Zheng, G.Q. Cao, Y. Sun, and Y. Zhang, Waste Manag. 64, 190 (2017).CrossRefGoogle Scholar
  12. 12.
    W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F. Zhang, and J.Y. Hwang, JOM 69, 784 (2017).CrossRefGoogle Scholar
  13. 13.
    T.W. Ellis and A.H. Mirza, J. Power Sources 195, 4525 (2010).CrossRefGoogle Scholar
  14. 14.
    X.F. Zhu, J.K. Yang, L.X. Gao, J.W. Liu, D.N. Yang, X.J. Sun, W. Zhang, Q. Wang, L. Li, D.S. He, and R.V. Kumar, Hydrometallurgy 134–135, 47 (2013).CrossRefGoogle Scholar
  15. 15.
    R.D. Prengaman, Recovering Lead from Batteries. JOM 47, 31 (1995).CrossRefGoogle Scholar
  16. 16.
    W.H. Yu, P.Y. Zhang, J.K. Yang, M.Y. Li, Y.C. Hu, S. Liang, J.X. Wang, S.Y. Li, K.K. Xiao, H.J. Hou, J.P. Hu, and R.V. Kumar, J. Clean. Prod. 210, 1534 (2019).CrossRefGoogle Scholar
  17. 17.
    Y. Gong, J.E. Dutrizac, and T.T. Chert, Hydrometallurgy 31, 175 (1992).CrossRefGoogle Scholar
  18. 18.
    J.F. Zhang, L. Yi, L.C. Yang, Y. Huang, W.F. Zhou, and W.J. Bian, Hydrometallurgy 160, 123 (2016).CrossRefGoogle Scholar
  19. 19.
    A.G. Morachevskii, Y.S. Kuznetsova, and O.A. Kal’ko, Russ. J. Appl. Chem. 78, 1543 (2005).CrossRefGoogle Scholar
  20. 20.
    V.P. Yanakieva, G.A. Haralampiev, and N.K. Lyakov, J. Power Sources 85, 178 (2009).CrossRefGoogle Scholar
  21. 21.
    T. Buzatu, M.I. Petrescu, V.G. Ghica, M. Buzatu, and G. Iacob, Asia-Pac. J. Chem. Eng. 10, 125 (2014).CrossRefGoogle Scholar
  22. 22.
    N.K. Lyakov, D.A. Atanasova, V.S. Vassilev, and G.A. Haralampiev, J. Power Sources 171, 960 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Ma, J.F. Zhang, Y. Huang, and J. Cao, Hydrometallurgy 178, 146 (2018).CrossRefGoogle Scholar
  24. 24.
    Y.J. Ma and K.Q. Qiu, Waste Manag. 40, 151 (2015).CrossRefGoogle Scholar
  25. 25.
    E. Expósito, J. Iniesta, J. González-García, V. Montiel, and A. Aldaz, J. Power Sources 92, 260 (2001).CrossRefGoogle Scholar
  26. 26.
    N.D. Nikolić, K.I. Popov, P.M. Živković, and G. Branković, J. Electroanal. Chem. 691, 66 (2013).CrossRefGoogle Scholar
  27. 27.
    X. Zhang, Y.Z. Sun, and J.Q. Pan, Int. J. Electrochem. Sci. 12, 6966 (2017).CrossRefGoogle Scholar
  28. 28.
    T. Dobrev and S. Rashkov, Hydrometallurgy 40, 277 (1996).CrossRefGoogle Scholar
  29. 29.
    D. Pletcher, H.T. Zhou, G. Kear, C.T.J. Low, F.C. Walsh, and R.G.A. Wills, J. Power Sources 180, 621 (2008).CrossRefGoogle Scholar
  30. 30.
    C.S. Chen, Y.J. Shih, and Y.H. Huang, Waste Manag. 52, 212 (2016).CrossRefGoogle Scholar
  31. 31.
    Y.Y. Gu, Q.H. Zhou, and T.Z. Yang, Trans. Nonferrous Metal. Soc. 21, 1407 (2011).CrossRefGoogle Scholar
  32. 32.
    G. Díaz, D. Martín, C. Frías, and F. Sánchez, JOM 53, 30 (2001).CrossRefGoogle Scholar
  33. 33.
    X.F. Zhu, X. He, J.K. Yang, L.X. Gao, J.W. Liu, D.N. Yang, X.J. Sun, W. Zhang, Q. Wang, and R.V. Kumer, J. Hazard. Mater. 250–251, 387 (2013).CrossRefGoogle Scholar
  34. 34.
    C. Ma, Y.H. Shu, and H.Y. Chen, J. Electrochem. Soc. 163, 2240 (2016).CrossRefGoogle Scholar
  35. 35.
    M.S. Sonmez and R.V. Kumar, Hydrometallurgy 95, 82 (2009).CrossRefGoogle Scholar
  36. 36.
    P.G. Gao, W.X. Lv, R. Zhang, Y. Liu, G.H. Li, X.F. Bu, and L.X. Lei, J. Power Sources 248, 363 (2014).CrossRefGoogle Scholar
  37. 37.
    P.G. Gao, Y. Liu, W.X. Lv, R. Zhang, W. Liu, X.F. Bu, G.H. Li, and L.X. Lei, J. Power Sources 265, 192 (2014).CrossRefGoogle Scholar
  38. 38.
    M.S. Sonmez and R.V. Kumar, Hydrometallurgy 95, 53 (2009).CrossRefGoogle Scholar
  39. 39.
    L. Lei, X.F. Zhu, D.N. Yang, L.X. Gao, J.W. Liu, R.V. Kumar, and J.K. Yang, J. Hazard. Mater. 203–204, 274 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Li, S.H. Yang, P. Taskinen, J. He, F.W. Liao, R.B. Zhu, Y.M. Chen, C.B. Tang, Y.J. Wang, and A. Jokilaakso, J. Clean. Prod. 162–171, 217 (2019).Google Scholar
  41. 41.
    R.R. Hao, X.Y. Fang, and S.C. Niu, The Series of Inorganic Chemistry, Vol. 3 (Beijing: China Science Press, 1988).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Zhen Ouyang
    • 1
  • Shefen Liu
    • 2
  • Yujie Hu
    • 1
  • Longgang Ye
    • 1
    Email author
  1. 1.College of Metallurgy and Material EngineeringHunan University of TechnologyZhuzhouChina
  2. 2.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations