, Volume 71, Issue 12, pp 4405–4413 | Cite as

Interaction Between Natural Aging and Pre-Aging Processes and its Impact on the Age-Hardening Behavior of Al-Mg-Si Automotive Sheets

  • G. J. Gao
  • Y. LiEmail author
  • Z. D. Wang
  • R. D. K. Misra
  • H. S. Di
  • J. D. Li
  • G. M. Xu
Aluminum: Shape Casting and Forming


Pre-aging (PA) treatment, employed shortly or for a long time after solution treatment, has different effects on the age-hardening of Al-Mg-Si automotive sheets. Here, the influence of natural aging and PA on the age-hardening behavior was systematically investigated. The aging response decreased with increasing room temperature (RT) storage time and RT storage time before PA treatment. The clustering activity before paint bake-hardening (BH) had little effect on the average r values of the alloy sheets. The hardness of the NA0 sample (No RT + No PA) was higher than that of NA0PA sample (No RT + PA) during paint BH at 185°C. The difference in hardness decreased significantly with increasing RT storage time. The cluster type formed before paint BH significantly affected the size and distribution of the strengthening precipitates, resulting in a variation in peak aged hardness.



The authors acknowledge financial support from the Project 51790485 supported by National Natural Science Foundation of China and thank LetPub ( for its linguistic assistance during the preparation of this manuscript.

Supplementary material

11837_2019_3780_MOESM1_ESM.pdf (251 kb)
Supplementary material 1 (PDF 251 kb)


  1. 1.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng., A 280, 37 (2000).CrossRefGoogle Scholar
  2. 2.
    J. Hirsch and T. Al-Samman, Acta Mater. 61, 818 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer, Acta Mater. 59, 3352 (2011).CrossRefGoogle Scholar
  4. 4.
    X. Wang, S. Esmaeili, and D.J. Lloyd, Metall. Mater. Trans. A 37, 2691 (2006).CrossRefGoogle Scholar
  5. 5.
    C.D. Marioara, H. Nordmark, S.J. Andersen, and R. Holmestad, J. Mater. Sci. 41, 471 (2006).CrossRefGoogle Scholar
  6. 6.
    V. Fallah, A. Korinek, N.O. Opoku, B. Raeisinia, M. Gallerneault, N. Provatas, and S. Esmaeili, Acta Mater. 82, 457 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Jin, T. Ngai, L. Li, Y. Lai, Z. Chen, and A. Wang, J. Alloy. Compd. 742, 852 (2017).CrossRefGoogle Scholar
  8. 8.
    H.W. Zandbergen, S.J. Andersen, and J. Jansen, Science 277, 1221 (1997).CrossRefGoogle Scholar
  9. 9.
    J.H. Chen, E. Costan, M.A. van Huis, Q. Xu, and H.W. Zandbergen, Science 312, 416 (2006).CrossRefGoogle Scholar
  10. 10.
    P.H. Ninive, A. Strandlie, S.G. Dahl, W. Lefebvre, C.D. Marioara, S.J. Andersen, J. Friis, R. Holmestad, and O.M. Løvvik, Acta Mater. 69, 126 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno, J. Mater. Sci. 35, 179 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, and S.J. Andersen, Acta Mater. 55, 3815 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Serizawa, S. Hirosawa, and T. Sato, Metall. Mater. Trans. A 39, 243 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Mater. Sci. Eng., A 631, 86 (2015).CrossRefGoogle Scholar
  15. 15.
    G.J. Gao, Y. Li, Z.D. Wang, R.D.K. Misra, J.D. Li, and G.M. Xu, J. Alloy. Compd. 753, 457 (2018).CrossRefGoogle Scholar
  16. 16.
    W. Yang, M. Wang, R. Zhang, Q. Zhang, and X. Sheng, Scr. Mater. 62, 705 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Murayama and K. Hono, Acta Mater. 47, 1537 (1999).CrossRefGoogle Scholar
  18. 18.
    Y. Birol, Mater. Sci. Eng., A 391, 175 (2005).CrossRefGoogle Scholar
  19. 19.
    C.S.T. Chang and J. Banhart, Metall. Mater. Trans. A 42, 1960 (2011).CrossRefGoogle Scholar
  20. 20.
    J.D. Bryant, Metall. Mater. Trans. A 30, 1999 (1999).CrossRefGoogle Scholar
  21. 21.
    M. Madanat, M. Liu, and J. Banhart, Acta Mater. 159, 163 (2018).CrossRefGoogle Scholar
  22. 22.
    L. Cao, P.A. Rometsch, and M.J. Couper, Mater. Sci. Eng., A 571, 77 (2013).CrossRefGoogle Scholar
  23. 23.
    J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, and A.J. Hill, Adv. Eng. Mater. 12, 559 (2010).CrossRefGoogle Scholar
  24. 24.
    C.H. Liu, Y.X. Lai, J.H. Chen, G.H. Tao, L.M. Liu, P.P. Ma, and C.L. Wu, Scr. Mater. 115, 150 (2016).CrossRefGoogle Scholar
  25. 25.
    Y. Weng, Z. Jia, L. Ding, M. Liu, X. Wu, and Q. Liu, Prog. Nat. Sci-Mater. 28, 363 (2018).CrossRefGoogle Scholar
  26. 26.
    O. Engler and J. Hirsch, Mater. Sci. Eng., A 336, 249 (2002).CrossRefGoogle Scholar
  27. 27.
    K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logéa, Prog. Mater Sci. 92, 284 (2018).CrossRefGoogle Scholar
  28. 28.
    Y. Birol, Scr. Mater. 52, 169 (2005).CrossRefGoogle Scholar
  29. 29.
    Y. Birol and M. Karlik, Scr. Mater. 55, 625 (2006).CrossRefGoogle Scholar
  30. 30.
    C.H. Shen, J. Mater. Sci. Technol. 27, 205 (2011).CrossRefGoogle Scholar
  31. 31.
    L. Ding, Y. He, Z. Wen, P. Zhao, Z. Jia, and Q. Liu, J. Alloy. Compd. 647, 238 (2015).CrossRefGoogle Scholar
  32. 32.
    Y. Takaki, T. Masuda, E. Kobayashi, and T. Sato, Mater. Trans. 55, 1257 (2014).CrossRefGoogle Scholar
  33. 33.
    H. Zhong, P.A. Rometsch, Q. Zhu, L. Cao, and Y. Estrin, Mater. Sci. Eng., A 687, 323 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • G. J. Gao
    • 1
  • Y. Li
    • 1
    Email author
  • Z. D. Wang
    • 1
  • R. D. K. Misra
    • 2
  • H. S. Di
    • 1
  • J. D. Li
    • 1
  • G. M. Xu
    • 1
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations