pp 1–8 | Cite as

Disassembly Automation for Recycling End-of-Life Lithium-Ion Pouch Cells

  • Liurui Li
  • Panni Zheng
  • Tairan Yang
  • Robert Sturges
  • Michael W. Ellis
  • Zheng LiEmail author
Extraction and Recycling of Battery Materials


Rapid advances in the use of lithium-ion batteries (LIBs) in consumer electronics, electric vehicles, and electric grid storage have led to a large number of end-of-life (EOL) LIBs awaiting recycling to reclaim critical materials and eliminate environmental hazards. This article studies automatic mechanical separation methodology for EOL pouch LIBs with Z-folded electrode-separator compounds (ESC). Customized handling tools are designed, manufactured, and assembled into an automatic disassembly system prototype that consists of three modules. Verification experiments utilizing dummy cells prove that the main components of pouch LIBs (cathode sheets, anode sheets, separators, and polymer-laminated aluminum film housing) can be automatically separated and extracted with well-preserved integrity using our proposed disassembly strategy.



This work was supported in part by the Commonwealth Research Commercialization Fund (CRCF) under Award MF18-031-En, in part by the Small Business Technology Transfer (STTR) Phase I Program of the National Science Foundation (NSF) under Award No. 1819982 and in part by the Department of Mechanical Engineering at Virginia Tech. The authors also thank Yingqi Lu and Dayang Ge for their contributions to setting up the pneumatic assembly line.

Supplementary material

11837_2019_3778_MOESM1_ESM.pdf (258 kb)
Supplementary material 1 (PDF 257 kb)


  1. 1.
    C. Curry, Lithium-Ion Battery Costs and Market (Bloomberg New Energy Finance, 2007). Accessed July 2007.
  2. 2.
    S.B. Peterson, J. Apt, and J.F. Whitacre, J. Power Sources 195, 2385 (2010).CrossRefGoogle Scholar
  3. 3.
    L.A.-W. Ellingsen, G. Majeau-Bettez, B. Singh, A.K. Srivastava, L.O. Valøen, and A.H. Strømman, J. Ind. Ecol. 18, 113 (2014).CrossRefGoogle Scholar
  4. 4.
    W. Lv, Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun, ACS Sustain. Chem. Eng. 6, 1504 (2018).CrossRefGoogle Scholar
  5. 5.
    X. Sun, H. Hao, F. Zhao, and Z. Liu, Resour. Conserv. Recycl. 124, 50 (2017).CrossRefGoogle Scholar
  6. 6.
    D.A. Ferreira, L.M.Z. Prados, D. Majuste, and M.B. Mansur, J. Power Sources 187, 238 (2009).CrossRefGoogle Scholar
  7. 7.
    X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen, Chem. Soc. Rev. 47, 7239 (2018).CrossRefGoogle Scholar
  8. 8.
    Y. Shi, G. Chen, and Z. Chen, Green Chem. 20, 851 (2018).CrossRefGoogle Scholar
  9. 9.
    X. Li, J. Zhang, D. Song, J. Song, and L. Zhang, J. Power Sources 345, 78 (2017).CrossRefGoogle Scholar
  10. 10.
    X. Song, T. Hu, C. Liang, H.L. Long, L. Zhou, W. Song, L. You, Z.S. Wu, and J.W. Liu, RSC Adv. 7, 4783 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Diekmann, C. Hanisch, L. Froböse, G. Schälicke, T. Loellhoeffel, A.-S. Fölster, and A. Kwade, J. Electrochem. Soc. 164, A6184 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haselrieder, and A. Kwade, J. Clean. Prod. 108, 301 (2015).CrossRefGoogle Scholar
  13. 13.
    D.-S. Kim, J.-S. Sohn, C.-K. Lee, J.-H. Lee, K.-S. Han, and Y.-I. Lee, J. Power Sources 132, 145 (2004).CrossRefGoogle Scholar
  14. 14.
    Z. Li, R. Sturges Jr., L. Li, and T. Yang, PCT/2018/045006 (2 August 2018).Google Scholar
  15. 15.
    R. Schröder, A. Glodde, M. Aydemir, and G. Bach, Appl. Mech. Mater. 794, 19 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, and K. Droeder, Nat. Energy 3, 290 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations