pp 1–13 | Cite as

A Review of Ab Initio Calculation on Lattice Distortion in High-Entropy Alloys

  • Huijuan Ge
  • Fuyang TianEmail author
Technical Article


Lattice distortion is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). Lattice distortion in HEAs has been investigated in experiments and estimated in theory. In this review, we focus on the lattice distortion based on available ab initio calculations. The degree of lattice distortion and its influence on the ground-state property, local magnetic moments, phase stability, and mechanical performance are reviewed in single-phase high-entropy alloys.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51771015, U1804123), State Key Lab of Advanced Metals and Materials (Grant No. 2018-ZD01), the Science Challenge Project (Grant No. TZ2018002), and the fundamental research funds for the Central Universities (Grant No. FRF-TP-18-013A3).


  1. 1.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Guo and C.T. Liu, Progr. Nat. Sci. Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
  3. 3.
    F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos, Intermetallics 58, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
  5. 5.
    Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu, Scr. Mater. 94, 28 (2015).CrossRefGoogle Scholar
  6. 6.
    Y.F. Ye, C.T. Liu, and Y. Yang, Acta Mater. 94, 152 (2015).CrossRefGoogle Scholar
  7. 7.
    D. Nicholson, M. Ojha, and T. Egami, J. Phys. Condens. Matter 25, 435505 (2013).CrossRefGoogle Scholar
  8. 8.
    L.R. Owen and N.G. Jones, J. Mater. Res. 33, 2954 (2018).CrossRefGoogle Scholar
  9. 9.
    W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Metall. Mater. Trans. A 44, 1994 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Tong, K. Jin, H. Bei, J.Y.P. Ko, D.C. Pagan, Y. Zhang, and F.X. Zhang, Mater. Des. 155, 1 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. Tong, S. Zhao, K. Jin, H. Bei, J.Y.P. Ko, Y. Zhang, and F.X. Zhang, Scr. Mater. 156, 14 (2018).CrossRefGoogle Scholar
  12. 12.
    Y. Tong, G. Velisa, S. Zhao, W. Guo, T. Yang, K. Jin, C. Lu, H. Bei, J.Y. Ko, D.C. Pagan, and Y. Zhang, Materialia 2, 73 (2018).CrossRefGoogle Scholar
  13. 13.
    F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y. Ko, D.C. Pagan, J.C. Neuefeind, and W.J. Weber, Phys. Rev. Lett. 118, 205501 (2017).CrossRefGoogle Scholar
  14. 14.
    L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, Acta Mater. 122, 11 (2017).CrossRefGoogle Scholar
  15. 15.
    N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, AIP Adv. 6, 125008 (2016).CrossRefGoogle Scholar
  16. 16.
    H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Kormann, and D. Raabe, Entropy 18, 321 (2016).CrossRefGoogle Scholar
  17. 17.
    F. Kormann and M.H.F. Sluiter, Entropy 18, 403 (2016).CrossRefGoogle Scholar
  18. 18.
    H.Q. Song, F.Y. Tian, Q.M. Hu, L. Vitos, Y.D. Wang, J. Shen, and N.X. Chen, Phys. Rev. Mater. 1, 023404 (2017).CrossRefGoogle Scholar
  19. 19.
    F. Tian, D.-Y. Lin, X. Gao, H. Song, Y.-F. Zhao, and H. Song, arXiv preprint arXiv:1810.06144 (2018).
  20. 20.
    Y.F. Ye, Y.H. Zhang, Q.F. He, Y. Zhuang, S. Wang, S.Q. Shi, A. Hu, J. Fan, and Y. Yang, Acta Mater. 150, 182 (2018).CrossRefGoogle Scholar
  21. 21.
    L.-Y. Tian, G. Wang, J.S. Harris, D.L. Irving, J. Zhao, and L. Vitos, Mater. Des. 114, 243 (2017).CrossRefGoogle Scholar
  22. 22.
    Q. He and Y. Yang, Front. Mater. 5, 42 (2018).CrossRefGoogle Scholar
  23. 23.
    A. van de Walle, P. Tiwary, M. De Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, Calphad 42, 13 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Zunger, S. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).CrossRefGoogle Scholar
  25. 25.
    A. Van De Walle, M. Asta, and G. Ceder, Calphad 26, 539 (2002).CrossRefGoogle Scholar
  26. 26.
    C. Jiang and B.P. Uberuaga, Phys. Rev. Lett. 116, 105501 (2016).CrossRefGoogle Scholar
  27. 27.
    F. Tian, Front. Mater. 4, 36 (2017).CrossRefGoogle Scholar
  28. 28.
    F. Tian, Y. Wang, and L. Vitos, J. Appl. Phys. 121, 015105 (2017).CrossRefGoogle Scholar
  29. 29.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  30. 30.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  31. 31.
    L.Y. Tian, L.H. Ye, Q.M. Hu, S. Lu, J.J. Zhao, and L. Vitos, Comput. Mater. Sci. 128, 302 (2017).CrossRefGoogle Scholar
  32. 32.
    L.-Y. Tian, Q.-M. Hu, R. Yang, J. Zhao, B. Johansson, and L. Vitos, J. Phys. Condens. Matter 27, 315702 (2015).CrossRefGoogle Scholar
  33. 33.
    L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer, 2007).Google Scholar
  34. 34.
    F. Shimizu, S. Ogata, and J. Li, Mater. Trans. 48, 2923 (2007).CrossRefGoogle Scholar
  35. 35.
    F. Tian, H. Zhao, Y. Wang, and N. Chen, Scr. Mater. 166, 164 (2019).CrossRefGoogle Scholar
  36. 36.
    S. Wang, S. Chen, Y. Jia, Z. Hu, H. Huang, Z. Yang, A. Dong, G. Zhu, D. Wang, D. Shu, and F. Tian, Mater. Des. 168, 107648 (2019).CrossRefGoogle Scholar
  37. 37.
    S.-M. Zheng, W.-Q. Feng, and S.-Q. Wang, Comput. Mater. Sci. 142, 332 (2018).CrossRefGoogle Scholar
  38. 38.
    A.E. Carlsson and P.A. Fedders, Phys. Rev. B Condens. Matter 34, 3567 (1986).CrossRefGoogle Scholar
  39. 39.
    A.D. Wissner-Gross and C.E. Freer, Phys. Rev. Lett. 110, 168702 (2013).CrossRefGoogle Scholar
  40. 40.
    W.Q. Feng, S.M. Zheng, Y. Qi, and S.Q. Wang, in Materials Science Forum (Trans Tech Publ, 2017), pp. 611.Google Scholar
  41. 41.
    F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos, J. Alloy. Compd. 599, 19 (2014).CrossRefGoogle Scholar
  42. 42.
    Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, Mater. Lett. 130, 277 (2014).CrossRefGoogle Scholar
  43. 43.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloy. Compd. 509, 6043 (2011).CrossRefGoogle Scholar
  44. 44.
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
  45. 45.
    N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, J. Alloy. Compd. 628, 170 (2015).CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, Sci Rep 3, 1455 (2013).CrossRefGoogle Scholar
  47. 47.
    M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, J. Appl. Phys. 109, 07E307 (2011).CrossRefGoogle Scholar
  48. 48.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
  49. 49.
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
  50. 50.
    I. Toda-Caraballo, J.S. Wróbel, S.L. Dudarev, D. Nguyen-Manh, and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 97, 156 (2015).CrossRefGoogle Scholar
  51. 51.
    F. Körmann, A.V. Ruban, and M.H.F. Sluiter, Mater. Res. Lett. 5, 35 (2016).CrossRefGoogle Scholar
  52. 52.
    S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, and D. Raabe, Adv Mater 31, e1807142 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute for Applied PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations