Advertisement

JOM

pp 1–11 | Cite as

Quasi In Situ Growth Observation and Precipitation Kinetics Assessment of the β-Mn Phase in Fe-30Mn-9Al-1C Steel

  • Jia Xing
  • Lifeng Hou
  • Huayun Du
  • Baosheng Liu
  • Yinghui WeiEmail author
Microstructure Evolution During Deformation Processing
  • 15 Downloads

Abstract

This paper investigated the microstructure evolution of cold-rolled Fe-30Mn-9Al-1C steel at various heat treatment temperatures and found that the β-Mn phase could rapidly precipitate at moderate temperatures. A method of quasi in situ observation was used to observe the precipitation of the intergranular and intragranular β-Mn phase. A transmission electron microscopy analysis showed that the transition band can act as a rapid precipitation passage of the β-Mn phase. Intragranular κ-carbides caused the β-Mn phase to precipitate without the formation of the α-ferrite phase. The precipitation reaction, \( \gamma \mathop \to \limits^{\kappa } \beta{\text{-Mn}} + \gamma^{\prime } \), was verified by estimating the Gibbs free energy change to − 46741 J/mol according to the Fe-Mn-Al-C quaternary thermodynamics model. The strain storage energy at the deformation band boundaries can be up to 55% according to the kinetics calculation, which supported the priority of the transition band in the rapid precipitation of the β-Mn phase.

Notes

Acknowledgements

We appreciate Prof. Youn-Bae Kang for the instruction about the thermodynamic calculations. This work was supported by the Key Scientific Research Project in Shanxi Province (Grant Nos. MC2016-06, 201603D111004, 20181101014 and 201805D121003), Research Project Supported by Shanxi Scholarship Council of China (2017-029), and Patent Promotion and Implement Found of Shanxi Province (20171003).

References

  1. 1.
    S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Prog. Mater Sci. 89, 345 (2017).CrossRefGoogle Scholar
  2. 2.
    F. Yang, R. Song, Y. Li, T. Sun, and K. Wang, Mater. Des. 76, 32 (2015).CrossRefGoogle Scholar
  3. 3.
    L. Zhang, R. Song, C. Zhao, and F. Yang, Mater. Sci. Eng. A 640, 225 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Rahnama, H. Kotadia, S. Clark, V. Janik, and S. Sridhar, Sci. Rep. 8, 9065 (2018).CrossRefGoogle Scholar
  5. 5.
    C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D.A. Molodov, Acta Mater. 122, 332 (2017).CrossRefGoogle Scholar
  6. 6.
    G. Frommeyer and U. Brux, Steel Res. Int. 77, 627 (2006).CrossRefGoogle Scholar
  7. 7.
    J. Xing, Y. Wei, and L. Hou, JOM 70, 929 (2018).CrossRefGoogle Scholar
  8. 8.
    R.A. Howell and D.C.V. Aken, Iron Steel Technol. 6, 193 (2009).Google Scholar
  9. 9.
    J.D. Yoo and K.T. Park, Mater. Sci. Eng. A 496, 417 (2008).CrossRefGoogle Scholar
  10. 10.
    K.M. Chang, C.G. Chao, and T.F. Liu, Scr. Mater. 63, 162 (2010).CrossRefGoogle Scholar
  11. 11.
    K.-T. Park, Scr. Mater. 68, 375 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim, Scr. Mater. 63, 1028 (2010).CrossRefGoogle Scholar
  13. 13.
    K.-T. Park, S.W. Hwang, C.Y. Son, and J.-K. Lee, JOM 66, 1828 (2014).CrossRefGoogle Scholar
  14. 14.
    W.J. Lu, X.F. Zhang, and R.S. Qin, Mater. Lett. 138, 96 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Moon, S.-J. Park, J.H. Jang, T.-H. Lee, C.-H. Lee, H.-U. Hong, D.-W. Suh, S.H. Kim, H.N. Han, and B.H. Lee, Scr. Mater. 127, 97 (2017).CrossRefGoogle Scholar
  16. 16.
    M.J. Yao, P. Dey, J.B. Seol, P. Choi, M. Herbig, R.K.W. Marceau, T. Hickel, J. Neugebauer, and D. Raabe, Acta Mater. 106, 229 (2016).CrossRefGoogle Scholar
  17. 17.
    W. Song, W. Zhang, J. von Appen, R. Dronskowski, and W. Bleck, Steel Res. Int. 86, 1161 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Hafner and D. Hobbs, Phys. Rev. B 68, 014408 (2003).CrossRefGoogle Scholar
  19. 19.
    S.C. Tjong, Mater. Charact. 24, 275 (1990).CrossRefGoogle Scholar
  20. 20.
    J. Moon, S.J. Park, C. Lee, H.N. Han, T.H. Lee, and C.H. Lee, Metall. Mater. Trans. A 48a, 4500 (2017).CrossRefGoogle Scholar
  21. 21.
    C.Y. Chao, C.N. Hwang, and T.F. Liu, Scr. Metall. Mater. 28, 109 (1993).CrossRefGoogle Scholar
  22. 22.
    K. Lee, S.-J. Park, J. Moon, J.-Y. Kang, T.-H. Lee, and H.N. Han, Scr. Mater. 124, 193 (2016).CrossRefGoogle Scholar
  23. 23.
    K. Lee, S.-J. Park, J. Lee, J. Moon, J.-Y. Kang, D.-I. Kim, J.-Y. Suh, and H.N. Han, J. Alloys Compd. 656, 805 (2016).CrossRefGoogle Scholar
  24. 24.
    X.P. Chen, Y.P. Xu, P. Ren, W.J. Li, W.Q. Cao, and Q. Liu, Mater. Sci. Eng. A 703, 167 (2017).CrossRefGoogle Scholar
  25. 25.
    K.H. Han and W.K. Choo, Metall. Trans. A 20A, 205 (1989).CrossRefGoogle Scholar
  26. 26.
    C.S. Lee, B.J. Duggan, and R.E. Smallman, Acta Metall. Mater. 41, 2265 (1993).CrossRefGoogle Scholar
  27. 27.
    S.S. Kulkarni, E.A. Starke, and D. Kuhlmann-Wilsdorf, Acta Mater. 46, 5283 (1998).CrossRefGoogle Scholar
  28. 28.
    D. Kuhlmann-Wilsdorf, J.T. Moore, E.A. Starke, and S.S. Kulkarni, Metall. Mater. Trans. A 30, 2491 (1999).CrossRefGoogle Scholar
  29. 29.
    W.K. Choo, J.H. Kim, and J.C. Yoon, Acta Mater. 45, 4877 (1997).CrossRefGoogle Scholar
  30. 30.
    C.S. Lee, B.J. Duggan, and R.E. Smallman, Philos. Mag. Lett. 68, 185 (1993).CrossRefGoogle Scholar
  31. 31.
    J. Xing, L. Hou, H. Du, B. Liu, and Y. Wei, Metall. Mater. Trans. A 50, 2629 (2019).CrossRefGoogle Scholar
  32. 32.
    M.S. Kim and Y.B. Kang, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 51, 89 (2015).CrossRefGoogle Scholar
  33. 33.
    M. Hillert, J. Alloys Compd. 320, 161 (2001).CrossRefGoogle Scholar
  34. 34.
    W. Huang, Metall. Trans. A 21, 2115 (1990).CrossRefGoogle Scholar
  35. 35.
    M.S. Kim and Y.B. Kang, J. Phase Equilib. Diffus. 36, 453 (2015).CrossRefGoogle Scholar
  36. 36.
    A.T. Dinsdale, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 15, 317 (1991).CrossRefGoogle Scholar
  37. 37.
    W. Zhou, L.M. Fu, P. Liu, X.D. Xu, B. Chen, G.Z. Zhu, X.D. Wang, A.D. Shan, and M.W. Chen, Intermetallics 85, 90 (2017).CrossRefGoogle Scholar
  38. 38.
    G. Abrivard, E.P. Busso, G. Cailletaud, and S. Forest, AIP Conf. Proc. 908, 661 (2007).CrossRefGoogle Scholar
  39. 39.
    Z.-D. Li, Z.-G. Yang, C. Zhang, and Z.-Q. Liu, Mater. Sci. Eng. A 527, 4406 (2010).CrossRefGoogle Scholar
  40. 40.
    F.X. Yin, H. Xia, J.H. Feng, M.H. Cai, X. Zhang, G.K. Wang, and T. Sawaguchi, Mater. Sci. Eng. A 725, 127 (2018).CrossRefGoogle Scholar
  41. 41.
    L. Zhao, D. Zhu, L. Liu, Z. Hu, and M. Wang, Acta Metall. Sin. (Engl. Lett.) 27, 601 (2014).CrossRefGoogle Scholar
  42. 42.
    N. Hashimoto, T.S. Byun, and K. Farrell, J. Nucl. Mater. 351, 295 (2006).CrossRefGoogle Scholar
  43. 43.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  44. 44.
    B.E. Warren and J. Biscce, J. Am. Ceram. Soc. 21, 49 (1938).CrossRefGoogle Scholar
  45. 45.
    X.G. Lu, M. Selleby, and B. Sundman, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 29, 68 (2005).CrossRefGoogle Scholar
  46. 46.
    B. Dutta, E. Valdes, and C.M. Sellars, Acta Metall. Mater. 40, 653 (1992).CrossRefGoogle Scholar
  47. 47.
    T.W. Lee, S.I. Kim, M.H. Hong, W.Y. Kim, Y.G. Yoo, and S.H. Lim, J. Alloys Compd. 582, 428 (2014).CrossRefGoogle Scholar
  48. 48.
    A. Schneider and G. Inden, Acta Mater. 53, 519 (2005).CrossRefGoogle Scholar
  49. 49.
    J.W. Cahn, Acta Metall. 5, 169 (1957).CrossRefGoogle Scholar
  50. 50.
    D. Kuhlmann-Wilsdorf, Metall. Mater. Trans. A 30, 2391 (1999).CrossRefGoogle Scholar
  51. 51.
    D. Kuhlmann-Wilsdorf, Acta Mater. 47, 1697 (1999).CrossRefGoogle Scholar
  52. 52.
    R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilib. Diffus. 27, 54 (2006).CrossRefGoogle Scholar
  53. 53.
    B. Dutta, E.J. Palmiere, and C.M. Sellars, Acta Mater. 49, 785 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jia Xing
    • 1
    • 3
  • Lifeng Hou
    • 1
    • 3
  • Huayun Du
    • 1
    • 3
  • Baosheng Liu
    • 2
    • 3
  • Yinghui Wei
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China
  3. 3.Shanxi Engineering Research Center of Corrosion and Protection for Metallic MaterialsTaiyuanPeople’s Republic of China

Personalised recommendations