Advertisement

JOM

pp 1–10 | Cite as

Effect of Solidification Defects and HAZ Softening on the Anisotropic Mechanical Properties of a Wire Arc Additive-Manufactured Low-Carbon Low-Alloy Steel Part

  • Mahya GhaffariEmail author
  • Alireza Vahedi Nemani
  • Mehran Rafieazad
  • Ali Nasiri
Technical Article
  • 8 Downloads

Abstract

Wire arc additive manufacturing (WAAM) is a pioneer additive-based technology for fabrication of large-scale engineering components. Despite the many advances in the field of additive manufacturing, formation of solidification defects, including discontinuities and microstructural imperfections, in the fabricated components is still inevitable, regardless of the feedstock material or fabrication process applied. In this study, the effects of solidification defects on the anisotropic mechanical properties of a low-carbon low-alloy steel (ER70S-6) wall produced by WAAM have been investigated. Analysis of the microstructure and mechanical properties of the fabricated part confirmed the formation of various solidification defects, i.e., interpass lack of fusions, localized brittle zones, and grain coarsening in the heat-affected zones, leading to anisotropic behavior in the ductility along the deposition versus building directions of the component. The effect of discontinuities on the anisotropic mechanical properties was minimized through microstructural modifications of the fabricated part using postprinting normalizing heat treatment.

Notes

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for sponsoring this work through Grant No. RGPIN-2017-04368.

References

  1. 1.
    J. Xiong, Z. Yin, and W. Zhang, J. Mater. Process. Technol. 233, 100 (2016).CrossRefGoogle Scholar
  2. 2.
    D. Ding, Z. Pan, D. Cuiuri, and H. Li, Robot. Comput. Integr. Manuf. 34, 8 (2015).CrossRefGoogle Scholar
  3. 3.
    D. Yang, C. He, and G. Zhang, J. Mater. Process. Technol. 227, 153 (2016).CrossRefGoogle Scholar
  4. 4.
    F. Montevecchi, G. Venturini, N. Grossi, A. Scippa, and G. Campatelli, Addit. Manuf. 18, 145 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Lopez, R. Bacelar, I. Pires, T.G. Santos, J.P. Sousa, and L. Quintino, Addit. Manuf. 21, 298 (2018).CrossRefGoogle Scholar
  6. 6.
    S. Das, D.L. Bourell, and S.S. Babu, MRS Bull. 41, 729 (2016).CrossRefGoogle Scholar
  7. 7.
    N. Takayama, G. Miyamoto, and T. Furuhara, Acta Mater. 145, 154 (2018).CrossRefGoogle Scholar
  8. 8.
    R.B. Dinwiddie, R.R. Dehoff, P.D. Lloyd, L.E. Lowe, and J.B. Ulrich, in Thermosense Thermal Infrared Applications XXXV (International Society for Optics and Photonics, 2013), p. 87050K.Google Scholar
  9. 9.
    A. Chaudhary, ASM Handb. 22, 240 (2009).Google Scholar
  10. 10.
    B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, and J. Norrish, J. Manuf. Process. 35, 127 (2018).CrossRefGoogle Scholar
  11. 11.
    N. Sridharan, M.W. Noakes, A. Nycz, L.J. Love, R.R. Dehoff, and S.S. Babu, Mater. Sci. Eng. A 713, 18 (2018).CrossRefGoogle Scholar
  12. 12.
    P. Zhang, J. Liu, and A.C. To, Scr. Mater. 135, 148 (2017).CrossRefGoogle Scholar
  13. 13.
    E. Herderick, Mater. Sci. Technol. 2, 1413 (2011).Google Scholar
  14. 14.
    X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams, and F. Martina, Mater. Charact. 143, 152 (2017).CrossRefGoogle Scholar
  15. 15.
    B.D. Deruntz, J. Ind. Technol. 19, 2 (2003).Google Scholar
  16. 16.
    A.O. Benscoter and B.L. Bramfitt, Metallogr. Microstruct. 9, 588 (2004).Google Scholar
  17. 17.
    ASTM Int., ASTM i, 1 (2015).Google Scholar
  18. 18.
    C.V. Haden, G. Zeng, F.M. Carter III, C. Ruhl, B.A. Krick, and D.G. Harlow, Addit. Manuf. 16, 115 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Shirizly and O. Dolev, JOM 71, 709 (2019).CrossRefGoogle Scholar
  20. 20.
    B. Shassere, A. Nycz, M.W. Noakes, C. Masuo, and N. Sridharan, Appl. Sci. 9, 787 (2019).CrossRefGoogle Scholar
  21. 21.
    M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, M. Durante, L. Boccarusso, F.M.C. Minutolo, and A. Squillace, Procedia CIRP 62, 470 (2017).CrossRefGoogle Scholar
  22. 22.
    H.K. Lee, K.S. Kim, and C.M. Kim, Eng. Fract. Mech. 66, 403 (2000).CrossRefGoogle Scholar
  23. 23.
    A.S. Haselhuhn, B. Wijnen, G.C. Anzalone, P.G. Sanders, and J.M. Pearce, J. Mater. Process. Technol. 226, 50 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Zhang, X. Song, P. Lu, and X. Hu, Mater. Des. 36, 233 (2012).CrossRefGoogle Scholar
  25. 25.
    T. Mohandas, G.M. Reddy, and B.S. Kumar, J. Mater. Process. Technol. 88, 284 (1999).CrossRefGoogle Scholar
  26. 26.
    X. Shi, S. Ma, C. Liu, Q. Wu, J. Lu, Y. Liu, and W. Shi, Mater. Sci. Eng. A 684, 196 (2017).CrossRefGoogle Scholar
  27. 27.
    Z. Wang, T.A. Palmer, and A.M. Beese, Acta Mater. 110, 226 (2016).CrossRefGoogle Scholar
  28. 28.
    B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).CrossRefGoogle Scholar
  29. 29.
    L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 4657 (2013).CrossRefGoogle Scholar
  30. 30.
    S. Suryakumar, K.P. Karunakaran, U. Chandrasekhar, and M.A. Somashekara, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227, 1138 (2013).CrossRefGoogle Scholar
  31. 31.
    B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis, Mater. Des. 89, 559 (2016).CrossRefGoogle Scholar
  32. 32.
    Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, Mater. Sci. Eng. A 673, 204 (2016).CrossRefGoogle Scholar
  33. 33.
    M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials (Cambridge: Cambridge University Press, 2009).zbMATHGoogle Scholar
  34. 34.
    Z. Wang and A.M. Beese, Acta Mater. 131, 410 (2017).CrossRefGoogle Scholar
  35. 35.
    L.I. Hua-bing, Z. Jiang, Z. Zhang, Y. Yang, H. Li, Z. Jiang, Z. Zhang, and Y. Yan, J. Iron Steel Res. Int. 16, 58 (2009).Google Scholar
  36. 36.
    X. Luo, X. Chen, T. Wang, S. Pan, and Z. Wang, Mater. Sci. Eng. A 710, 192 (2018).CrossRefGoogle Scholar
  37. 37.
    N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich, Mater. Sci. Eng. A 662, 481 (2016).CrossRefGoogle Scholar
  38. 38.
    B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee, Metall. Trans. A 22, 139 (1991).CrossRefGoogle Scholar
  39. 39.
    O.M. Akselsen, Ø. Grong, and J.K. Solberg, Mater. Sci. Technol. 3, 649 (1987).CrossRefGoogle Scholar
  40. 40.
    A. Lambert, A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel, and A. Pineau, Sci. Technol. Weld. Join. 5, 168 (2000).CrossRefGoogle Scholar
  41. 41.
    Volume 4 ASM Handbook, ASM Int. 1012 (1991).Google Scholar
  42. 42.
    K.W. Andrews, J. Iron Steel Inst. 203, 721 (1965).Google Scholar
  43. 43.
    C. Natividad, R. García, V.H. López, L.A. Falcón, and M. Salazar, Characteristics of Metal Alloys (Berlin: Springer, 2017), pp. 3–11.CrossRefGoogle Scholar
  44. 44.
    S. Bordbar, M. Alizadeh, and S.H. Hashemi, Mater. Des. 45, 597 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mahya Ghaffari
    • 1
    Email author
  • Alireza Vahedi Nemani
    • 1
  • Mehran Rafieazad
    • 1
  • Ali Nasiri
    • 1
  1. 1.Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations