pp 1–7 | Cite as

A Novel Method of Smelting a Mixture of Two Types of Laterite Ore to Prepare Ferronickel

  • Xueming Lv
  • Lunwei Wang
  • Zhixiong YouEmail author
  • Wenzhou Yu
  • Xuewei Lv
Technical Article


A novel method of smelting a mixture of two types of laterite ore (saprolitic and limonitic) to prepare ferronickel has been investigated. Thermodynamic analysis revealed that the melting temperature of the slag phase dropped below 1400°C with increasing FeO content, which can be regulated by adjusting the ratio of limonite and the carbon content. The experimental results also proved that the melting degree of the reduced pellets increased with increasing limonitic laterite ratio and that the reduction as well as magnetic separation was enhanced when the reduction was carried out in the presence of limonitic laterite ore. A ferronickel product with 8.08 wt.% Ni, 80.09 wt.% Fe, and 3.75 wt.% C was prepared by heating the mixture to 1380°C in the presence of 6 wt.% carbon content and 5 wt.% limonitic laterite ore, followed by magnetic separation. The Ni and Fe recoveries were 89.26% and 81.64 wt.%, respectively.



The authors wish to express their thanks to the National Natural Science Foundation of China (Grant Nos. 51904047 and 51234010) and the Fundamental Research Funds for the Central Universities (Projects Nos. 2018CDXYCL0018 and 2018CDPTCG0001/11) for financial support of this research.

Supplementary material

11837_2019_3771_MOESM1_ESM.pdf (290 kb)
Supplementary material 1 (PDF 289 kb)


  1. 1.
    M.G. King, JOM 57, 35 (2005).CrossRefGoogle Scholar
  2. 2.
    A.E.M. Warner, C.M. Diaz, and A.D. Dalvi, JOM 58, 11 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Liu, X.W. Lv, E.G. Guo, C. Pan, and Q.G. Yuan, ISIJ Int. 54, 1749 (2014).CrossRefGoogle Scholar
  4. 4.
    G.M. Mudd, Ore Geol. Rev. 38, 9 (2010).CrossRefGoogle Scholar
  5. 5.
    D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, Int. J. Miner. Process. 93, 1 (2011).Google Scholar
  6. 6.
    J.B. Chen and J.H. Xu, Mod. Min. 25, 1 (2006).Google Scholar
  7. 7.
    S.W. Zhang, S.B. Xie, and A.D. Xu, World Nonferrous Met. 11, 9 (2003).Google Scholar
  8. 8.
    X.W. Lv, C.G. Bai, S. He, and Q. Huang, ISIJ Int. 50, 380 (2010).CrossRefGoogle Scholar
  9. 9.
    W. Liang, H. Wang, J.G. Fu, and Z.X. He, J. Cent. South Univ. 42, 2173 (2011).Google Scholar
  10. 10.
    D.Q. Zhu, Y. Cui, S. Hapugoda, and K. Vining, Trans. Nonferr. Metal. Soc. 22, 907 (2012).CrossRefGoogle Scholar
  11. 11.
    M.A. Rhamahani, P.C. Hayes, and E. Jak, Miner. Process. Extr. Metall. Rev. 3, 129 (2009).CrossRefGoogle Scholar
  12. 12.
    Z.C. Cao, T.C. Sun, H.F. Yang, J.J. Wang, and X.D. Wu, J. Univ. Sci. Technol. Beijing 6, 708 (2010).Google Scholar
  13. 13.
    Z.H. Liu, X.B. Ma, D.Q. Zhu, Y.H. Li, and Q.H. Li, J. Cent. South Univ. 10, 2905 (2011).Google Scholar
  14. 14.
    W. Luo, Q.M. Feng, L.M. Ou, G.F. Zhang, and Y.P. Lu, Hydrometallurgy 1, 171 (2009).CrossRefGoogle Scholar
  15. 15.
    D.H. Rubisov and V.G. Papangelakis, Hydrometallurgy 58, 13 (2000).CrossRefGoogle Scholar
  16. 16.
    C. Pan, C.G. Bai, X.W. Lv, M.L. Hu, and T. Hu, Metal. Int. 16, 5 (2011).Google Scholar
  17. 17.
    X.M. Lv, X.W. Lv, L.W. Wang, J. Qiu, and M. Liu, J. Min. Metall. 53, 147 (2017).CrossRefGoogle Scholar
  18. 18.
    E.N. Zevgolis, C. Zografidis, and T. Perraki, J. Therm. Anal. Calorim. 100, 133 (2010).CrossRefGoogle Scholar
  19. 19.
    I. Kobayashi, Y. Tanigaki, and A. Uragami, Iron Steelmak. 28, 19 (2001).Google Scholar
  20. 20.
    T. Watanabe, S. Ono, H. Arai, and T. Matsumori, Int. J. Miner. Process. 19, 173 (1987).CrossRefGoogle Scholar
  21. 21.
    B. Li, H. Wang, and Y. Wei, Miner. Eng. 24, 1556 (2011).CrossRefGoogle Scholar
  22. 22.
    G.H. Tao, F. Xiao, and W. Jiang, Nonferrous Met. (Extr. Metall.) 8, 51 (2014).Google Scholar
  23. 23.
    G.H. Li, T.M. Shi, M.J. Rao, T. Jiang, and Y.B. Zhang, Miner. Eng. 32, 19 (2012).CrossRefGoogle Scholar
  24. 24.
    M. Rao, G. Li, T. Jiang, J. Luo, and Y. Zhang, JOM 65, 1573 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Jiang, T.C. Sun, Z.G. Liu, J. Kou, N. Liu, and S.Y. Zhang, Int. J. Miner. Process. 123, 32 (2013).CrossRefGoogle Scholar
  26. 26.
    B.Z. Ma, P. Xing, W.J. Yang, C.Y. Wang, Y.Q. Chen, and H. Wang, Metall. Mater. Trans. B 4, 2037 (2017).CrossRefGoogle Scholar
  27. 27.
    M. Valix and W.H. Cheung, Miner. Eng. 15, 7 (2002).CrossRefGoogle Scholar
  28. 28.
    Y.Y. Chuang, K.C. Hsieh, and Y.A. Chang, Metall. Trans. A 17, 1373 (1986).CrossRefGoogle Scholar
  29. 29.
    C.A. Pickles, J. Forster, and R. Elliott, Miner. Eng. 65, 33 (2014).CrossRefGoogle Scholar
  30. 30.
    J.O. Park, I.H. Jeong, S.M. Jung, and Y. Sasaki, ISIJ Int. 54, 1530 (2014).CrossRefGoogle Scholar
  31. 31.
    K. Ohno, M. Kaimoto, T. Maeda, K. Nishioka, and M. Shimizu, ISIJ Int. 51, 1279 (2011).CrossRefGoogle Scholar
  32. 32.
    H.S. Kim, Y.B. Kang, J.G. Kim, and Y. Sasaki, ISIJ Int. 51, 166 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingChina

Personalised recommendations