Advertisement

JOM

pp 1–10 | Cite as

Effect of Extrusion Temperature and Extrusion Ratio on Microstructure and Biodegradation Behavior of Mg-4.5Zn Binary Alloy

  • Mahdi Shiri
  • Hassan JafariEmail author
Microstructure Evolution During Deformation Processing
  • 19 Downloads

Abstract

Hot mechanical working is among the remedies to improve the corrosion resistance of magnesium and its alloys as the third generation of biomaterials. In the present study, Mg-4.5Zn alloy was extruded at different temperatures (300°C, 350°C, and 400°C) and ratios (6:1, 12:1, and 18:1). Optical and scanning electron microscopes were used to characterize the microstructure evolutions of the alloy after the extrusion. The degradation behavior of the alloy after extrusion was studied in the simulated body fluid using immersion and electrochemical tests. Results showed that a decreasing extrusion ratio reduces the number of dynamically recrystallized grains as well as the extrusion shearing fringe parallel lines. Besides, the alloy extruded at higher temperature is relatively larger with few dynamic recrystallized grown grains. It was revealed that the corrosion resistance of the extruded alloy is linearly enhanced with decreasing grain size. Moreover, a higher extrusion ratio results in a lower corrosion rate, while a higher extrusion temperature leads to a higher corrosion rate. The results also showed that the alloy extruded at 300°C and 18:1 ratio possesses the finest grain size (18.2 μm) and the most equiaxed grains, which provide the lowest electrochemical corrosion rate (0.89 mm/year).

Notes

References

  1. 1.
    C. Chen and G.A. Thouas, Mater. Sci. Eng. R. (2015).  https://doi.org/10.1016/j.mser.2014.10.001.Google Scholar
  2. 2.
    J.-M. Seitz, A. Lucas, and M. Kirschner, JOM (2016).  https://doi.org/10.1007/s11837-015-1773-1.Google Scholar
  3. 3.
    A.M. Al Alawi, S.W. Majoni, and H. Falhammar, Int. J. Endocrinol. (2018).  https://doi.org/10.1155/2018/9041694.Google Scholar
  4. 4.
    R. Singh, V. Venkatesh, and V. Kumar, Metals (2018).  https://doi.org/10.3390/met8020127.Google Scholar
  5. 5.
    Y. Zheng, Magnesium Alloys AS Degradable Biomaterials, 1st ed. (Boca Raton: CRC Press, 2016).Google Scholar
  6. 6.
    K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Int. Mater. Rev. (2015).  https://doi.org/10.1179/1743280414Y.0000000046.Google Scholar
  7. 7.
    P. Maier, N. Lauth, C. Mendis, M. Bechly, and N. Hort, JOM (2019).  https://doi.org/10.1007/s11837-019-03359-1.Google Scholar
  8. 8.
    H. Jafari, E. Heidari, A. Barabi, and M. Dashti Kheirabadi, Acta. Metall. Sin. (2018).  https://doi.org/10.1007/s40195-018-0707-7.Google Scholar
  9. 9.
    Z. Shahri, S.R. Allahkaram, R. Soltani, and H. Jafari, Surf. Coat. Technol. (2018).  https://doi.org/10.1016/j.surfcoat.2018.04.087.Google Scholar
  10. 10.
    M. Esmaily, J. Svensson, S. Fajardo, N. Birbilis, G. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L. Johansson, Prog. Mater Sci. (2017).  https://doi.org/10.1016/j.pmatsci.2017.04.011.Google Scholar
  11. 11.
    J.W. Seong and W.J. Kim, Acta Biomater. (2015).  https://doi.org/10.1016/j.actbio.2014.09.029.Google Scholar
  12. 12.
    D. Liu, C. Guo, L. Chai, V.R. Sherman, X. Qin, Y. Ding, and M.A. Meyers, Mater. Sci Eng. B. (2015).  https://doi.org/10.1016/j.mseb.2015.02.001.Google Scholar
  13. 13.
    B.J. Wang, D.K. Xu, J.H. Dong, and W. Ke, Scr. Mater. (2014).  https://doi.org/10.1016/j.scriptamat.2014.06.015.Google Scholar
  14. 14.
    X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, and W. Ding, J. Mech. Behav. Biomed. (2012).  https://doi.org/10.1016/j.jmbbm.2011.05.026.Google Scholar
  15. 15.
    H. Yao, J. Wen, Y. Xiong, Y. Lu, F. Ren, and W. Cao, J. Alloy. Compd. (2018).  https://doi.org/10.1016/j.jallcom.2017.12.225.Google Scholar
  16. 16.
    J. Li, L. Tan, P. Wan, X. Yu, and K. Yang, Mater. Sci. Eng. C (2015).  https://doi.org/10.1016/j.msec.2015.01.029.Google Scholar
  17. 17.
    X. Zhang, G. Yuan, J. Niu, P. Fu, and W. Ding, J. Mech. Behav. Biomed. (2012).  https://doi.org/10.1016/j.jmbbm.2012.02.002.Google Scholar
  18. 18.
    H. Xu, X. Zhang, K. Zhang, Y. Shi, and J. Ren, J. Rare Earth (2016).  https://doi.org/10.1016/S1002-0721(16)60031-5.Google Scholar
  19. 19.
    Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R (2014).  https://doi.org/10.1016/j.mser.2014.01.001.Google Scholar
  20. 20.
    Y. Yan, H.W. Cao, Y.J. Kang, K. Yu, T. Xiao, J. Luo, Y.W. Deng, H.J. Fang, H.Q. Xiong, and Y.L. Dai, J. Alloy Compd. (2017).  https://doi.org/10.1016/j.jallcom.2016.10.017.Google Scholar
  21. 21.
    H. Jafari, F. Rahimi, and Z. Sheikhsofla, Mater. Corros. (2016).  https://doi.org/10.1002/maco.201508509.Google Scholar
  22. 22.
    Z.Y. Jin, N.N. Li, K. Yan, J. Wang, J. Bai, and H. Dong, Acta Metall. Sin. (2018).  https://doi.org/10.1007/s40195-017-0681-5.Google Scholar
  23. 23.
    J. Fan, X. Qiu, X. Niu, Z. Tian, W. Sun, X. Liu, Y. Li, W. Li, and J. Meng, Mater. Sci. Eng. C (2013).  https://doi.org/10.1016/j.msec.2013.01.063.Google Scholar
  24. 24.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Amsterdam: Elsevier, 2004), pp. 121–266.CrossRefGoogle Scholar
  25. 25.
    S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, Mater. Sci. Eng. A (2007).  https://doi.org/10.1016/j.msea.2006.11.095.Google Scholar
  26. 26.
    A. Hadadzadeh, M.A. Wells, S.K. Shaha, H. Jahed, and B.W. Williams, J. Alloy Compd. (2017).  https://doi.org/10.1016/j.jallcom.2017.01.236.Google Scholar
  27. 27.
    P. Homayoun and M. Ketabchi, Key Engineering Materials, ed. L. Tomesani and L. Donati (Stafa-Zurich: Trans Tech Publications, 2012), pp. 241–247.Google Scholar
  28. 28.
    P.K. Saha, Aluminum Extrusion Technology (Materials Park: ASM International, 2000).Google Scholar
  29. 29.
    Q. Guo, H. Yan, Z. Chen, and H. Zhang, Mater. Charact. (2007).  https://doi.org/10.1016/j.matchar.2006.04.013.Google Scholar
  30. 30.
    M. Shahzad and L. Wagner, Mater. Sci. Eng. A. (2009).  https://doi.org/10.1016/j.msea.2008.11.038.Google Scholar
  31. 31.
    C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng, and S. Kamado, Mater. Sci. Eng. A. (2017).  https://doi.org/10.1016/j.msea.2016.12.121.Google Scholar
  32. 32.
    S. Johnston, Z. Shi, J. Venezuela, C. Wen, M.S. Dargusch, and A. Atrens, JOM (2019).  https://doi.org/10.1007/s11837-019-03327-9.Google Scholar
  33. 33.
    G.L. Song, Corrosion Prevention of Magnesium Alloys, 1st ed. (Amsterdam: Elsevier, 2013).CrossRefGoogle Scholar
  34. 34.
    S. González, E. Pellicer, S. Suriñach, M.D. Baró, and J. Sort, Biodegradation: Engineering and Technology, 1st ed., ed. R. Chamy and F. Rosenkranz (London: In tech, 2013), pp. 313–340.Google Scholar
  35. 35.
    R. Zeng, K.U. Kainer, C. Blawert, and W. Dietzel, J. Alloys Compd. (2011).  https://doi.org/10.1016/j.jallcom.2011.01.116.Google Scholar
  36. 36.
    Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, Mater. Sci. Eng. C (2015).  https://doi.org/10.1016/j.msec.2014.12.049.Google Scholar
  37. 37.
    N. Birbilis, K.D. Ralston, S. Virtanen, H.L. Fraser, and C.H.J. Davies, Corros. Eng. Sci. Technol. (2010).  https://doi.org/10.1179/147842209X12559428167805.Google Scholar
  38. 38.
    K.D. Ralston, N. Birbilis, and C.H.J. Davies, Scr. Mater. (2010).  https://doi.org/10.1016/j.scriptamat.2010.08.035.Google Scholar
  39. 39.
    K.D. Ralston and N. Birbilis, Corrosion (2010).  https://doi.org/10.5006/1.3462912.Google Scholar
  40. 40.
    A. Atrens, G.-L. Song, F. Cao, Z. Shi, and P.K. Bowen, J. Magnes. Alloys (2013).  https://doi.org/10.1016/j.jma.2013.09.003.Google Scholar
  41. 41.
    N. Birbilis, M.X. Zhang, and Y. Estrin, Key Engineering Materials, ed. N. El-Mahallawy and B. Zhang (Stafa-Zurich: Trans Tech Publications, 2008), pp. 229–240.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Engineering Department, Faculty of Materials Engineering and Modern TechnologiesShahid Rajaee Teacher Training University (SRTTU)TehranIran

Personalised recommendations