pp 1–11 | Cite as

Effect of Annealing and Aging Treatment on Pitting Corrosion Resistance of Fine-Grained Mg-8%Al-0.5%Zn Alloy

  • Gajanan M. NaikEmail author
  • S. Narendranath
  • S. S. Satheesh Kumar
  • Sandeep Sahu
Microstructure Evolution During Deformation Processing


In order to study the influence of plastic deformation, annealing and aging treatment on pitting corrosion, the AZ80Mg alloy was subjected to equal-channel angular pressing (ECAP) by route R at 325°C for up to 4 ECAP passes (P) and annealing conditions of 523 K, 623 K and 723 K followed by aging treatment at 6 h and 12 h. A microhardness and corrosion study was accomplished and microstructural evolution was recorded using optical microscopy (OM), scanning electron microscopy and electron backscatter diffraction (EBSD). OM and EBSD analysis showed that a fine-grain microstructure with average grain sizes of 32.87 µm and 6.35 µm was achieved after 2P and 4P of ECAP, respectively. During annealing and aging treatment, the fine-grain Mg alloy revealed that the maximum microhardness and improved corrosion resistance were observed mainly due to redistribution of β-secondary phases. Specifically, 12 h aged specimens at 523 K represented maximum microhardnesses of about 85 Hv and 87 Hv for ECAP-2P and -4P, respectively. Also, 12 h aging at 723 K appeared preferable for accomplishing enhanced corrosion properties.



This work was supported by DRDO-NRB, Government of India, under Grant Number NRB/4003/PG/366.


  1. 1.
    M. Avvari, S. Narendranath, and H. Shivananda Nayaka, Int. J. Mater. Prod. Technol. 51, 139 (2015).CrossRefGoogle Scholar
  2. 2.
    I.J. Polmear, Mater. Sci. Technol. 10, 1 (1994).CrossRefGoogle Scholar
  3. 3.
    G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, J. Met. Mater. Miner. 29, 2 (2019).Google Scholar
  4. 4.
    G.M. Naik, G.D. Gote, and S. Narendranath, Mater. Today Proc. 5, 17763 (2018).CrossRefGoogle Scholar
  5. 5.
    X. Zheng, D. Wenbo, K. Liu, Z. Wang, and S. Li, J. Magnes. Alloys 4, 135 (2016).CrossRefGoogle Scholar
  6. 6.
    G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, AIP Conf. Proc. 2082, 030016 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Yamashita, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 300, 142 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Avvari and M. Able, Adv. Mech. Eng. 8, 168 (2016).CrossRefGoogle Scholar
  9. 9.
    P. Minárik, R. Král, and M. Janeček, Appl. Surf. Sci. 281, 44 (2013).CrossRefGoogle Scholar
  10. 10.
    G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Satheesh Kumar, Mater. Res. Exp. 5, 086513 (2018).CrossRefGoogle Scholar
  11. 11.
    T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, and S. Rusz, Arch. Civ. Mech. Eng. 16, 325 (2016).CrossRefGoogle Scholar
  12. 12.
    C.S. Obayi, R. Tolouei, A. Mostavan, C. Paternoster, S. Turgeon, B.A. Okorie, and D. Mantovani, Biomatter 6, 959874 (2016).CrossRefGoogle Scholar
  13. 13.
    G.M. Naik, B.N. Anjan, S. Narendranath, S.S. Satheesh Kumar, and G.V. Preetham Kumar, Mater. Res. Exp. 6, 096538 (2019).CrossRefGoogle Scholar
  14. 14.
    L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, and M. Vedani, Mater. Des. 89, 1 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater Sci. 60, 130 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).CrossRefGoogle Scholar
  17. 17.
    P. Poddar, A. Kamaraj, A.P. Murugesan, S. Bagui, and K.L. Sahoo, J. Magnes. Alloys 5, 348 (2017).CrossRefGoogle Scholar
  18. 18.
    J. Qiao, F. Bian, M. He, and Y. Wang, Trans. Nonferrous Met. Soc. China 23, 2857 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Ning, Y. Yandong, B. Gao, L. Xiao, L. Wen, Z. Yan, L. Li, and X. Chen, Materials 11, 757 (2018).CrossRefGoogle Scholar
  20. 20.
    X.-B. Liu, D.-Y. Shan, Y.-W. Song, and E.-H. Han, Trans. Nonferrous Met. Soc. China 20, 1345 (2010).CrossRefGoogle Scholar
  21. 21.
    H.R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, M.H. Idris, A.F. Lotfabadi, M. Daroonparvar, and M.A.M. Yajid, Mater. Corros. 65, 999 (2014).CrossRefGoogle Scholar
  22. 22.
    R.L. Doiphode, S.N. Murty, N. Prabhu, and B.P. Kashyap, J. Magnes. Alloys 3, 322 (2015).CrossRefGoogle Scholar
  23. 23.
    T. Zhu, Z.W. Chen, and W. Gao, J. Mater. Eng. Perform. 19, 860 (2010).CrossRefGoogle Scholar
  24. 24.
    M. Avvari and S. Narendranath, Silicon 10, 39 (2018).CrossRefGoogle Scholar
  25. 25.
    J. Wei, G. Huang, D. Yin, K. Li, Q. Wang, and H. Zhou, Metals 7, 119 (2017).CrossRefGoogle Scholar
  26. 26.
    L. Zhou, Y. Liu, J. Zhang, and Z. Kang, Mater. Sci. Technol. 32, 969 (2016).CrossRefGoogle Scholar
  27. 27.
    M.B. Yang, X.F. Liang, L.I. Hui, and F.S. Pan, Trans. Nonferrous Met. Soc. China 20, s416 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Zhang, J. Liu, and B. Chen, Appl. Phys. A 125, 2 (2019).Google Scholar
  29. 29.
    C. Zhang, J. Liu, and B. Chen, Ceram. Int. 44, 16 (2018).Google Scholar
  30. 30.
    Y. Shi, B. Yang, and P. Liaw, Metals 7, 43 (2017).CrossRefGoogle Scholar
  31. 31.
    H. Liao, X. Zhou, H. Li, D.E.N.G. Min, X. Liang, and R. Liu, Trans. Nonferrous Met. Soc. China 25, 12 (2015).CrossRefGoogle Scholar
  32. 32.
    L. Xin, J. Jiang, Y. Zhao, D. Wen, and Y. Zhu, Trans. Nonferrous Met. Soc. China 25, 3909 (2015).CrossRefGoogle Scholar
  33. 33.
    K.R. Gopi, N.H. Shivananda, and S. Sahu, Arab. J. Sci. Eng. 43, 4871 (2018).CrossRefGoogle Scholar
  34. 34.
    G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, J. Mater. Eng. Perform. 28, 5 (2019).CrossRefGoogle Scholar
  35. 35.
    G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Satheesh Kumar, Adv. Mater. Res. 7, 2 (2018).Google Scholar
  36. 36.
    O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 45, 741 (1989).CrossRefGoogle Scholar
  37. 37.
    H. Jia, X. Feng, and Y. Yang, J. Magnes. Alloys 3, 247 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Corrosion Engineering Laboratory, Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkal, MangaluruIndia
  2. 2.Department Mechanical EngineeringMangalore Institute of Technology and EngineeringMoodbidri, MangaluruIndia
  3. 3.Defence Metallurgical Research Laboratory, KanchanbaghHyderabadIndia
  4. 4.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations