pp 1–9 | Cite as

Friction Stir Weld of AZ91 Magnesium Alloy With and Without Nano-SiC Particle

  • M. Farzami
  • M. FarahaniEmail author
  • D. Akbari
  • M. Tabasi
Technical Article


In this article, the influence of SiC nanoparticles on the friction stir welding of AZ91 magnesium alloy has been studied. For this purpose, a groove was designed to incorporate the nanoparticles into the weldment without requiring any additional tool to cover the weld surface. The welding process was carried out with and without nanoparticles in different process conditions. The mechanical properties and microstructure of the prepared joints were also studied. The results indicated that without using the nanoparticles, the minimum grain size of 2.79 µm along with the strength of 99% of the base metal can be achieved by applying the highest examined welding traverse speed and the lowest rotational speed. By using the SiC nanoparticles, in addition to annealing and dynamic recrystallization (DRX) mechanisms, the weld microstructure is also affected by pinning and aggregation mechanisms. Furthermore, it was realized that an increase in the rotational and traverse speeds adversely affects the mean grain size of the welded joints in the presence of nanoparticles. For the welded samples with nanoparticles, the grain size can be refined to 1.06 µm at the lowest traverse speed and the highest rotational speed.



The authors are grateful for the support of the Iran National Science Foundation (INSF), Project No. 95841215.


  1. 1.
    L.C. Tsao, C. Chen, H. Wu, R.W. Chang, and R.S. Chen, J. Manuf. Proc. 18, 167 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Farahani, I. Sattari-Far, D. Akbari, and R. Alderliesten, Proc. Inst. Mech. Eng. C 226, 2178 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Chen and X. Jiang, J. Manuf. Proc. 31, 14 (2015).CrossRefGoogle Scholar
  4. 4.
    F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, J. Alloys Compd. 673, 327 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Sepahi-Boroujeni and A. Sepahi-Boroujeni, J. Manuf. Proc. 31, 71 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Hu, H. Zhang, Z. Wang, Y. Liang, and Y. Liu, J. Manuf. Proc. 31, 298 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Sabokrouh, H. Hashemi, and M. Farahani, Proc. Inst. Mech. Eng. B 231, 1039 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Akbari, M. Farahani, and N. Soltani, J. Strain Anal. Eng. Des. 47, 73 (2012).CrossRefGoogle Scholar
  9. 9.
    I. Sattari-Far and M. Farahani, Int. J. Pres. Ves. Pip. 86, 723 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Farahani, I. Sattari-Far, D. Akbari, and R. Alderliesten, Fatigue Fract. Eng. Mater. 36, 115 (2013).CrossRefGoogle Scholar
  11. 11.
    S.H. Zargar, M. Farahani, and M. Besharati Givi, Proc. Inst. Mech. Eng. B 230, 654 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Enami, M. Farahani, and M. Farhang, Int. J. Adv. Manuf. Technol. 101, 3093 (2019).CrossRefGoogle Scholar
  13. 13.
    R. Xin, D. Liu, X. Shu, B. Li, X. Yang, and Q. Liu, J. Alloys Compd. 670, 64 (2016).CrossRefGoogle Scholar
  14. 14.
    K. Braszczyńska-Malik and M. Mroz, J. Alloys Compd. 509, 9951 (2011).CrossRefGoogle Scholar
  15. 15.
    F. Banglong, Q. Guoliang, L. Fei, M. Xiangmeng, Z. Jianzhong, and W. Chuansong, J. Mater. Process. Technol. 218, 38 (2015).CrossRefGoogle Scholar
  16. 16.
    H. Mohammadzadeh Jamalian, M. Farahani, M.K. Besharati Givi, and M. Aghaei Vafaei, Int. J. Adv. Manuf. Technol. 83, 611 (2016).CrossRefGoogle Scholar
  17. 17.
    R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R Rep. 50, 1 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Tabasi, M. Farahani, M.K. Besharati Givi, M. Farzami, and A. Moharami, Int. J. Adv. Manuf. Technol. 86, 705 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Dolatkhah, P. Golbabaei, M.K. Besharati Givi, and F. Molaiekiya, Mater. Des. 37, 458 (2012).CrossRefGoogle Scholar
  20. 20.
    P. Abachi, A. Kokabi, and M. Azizieh, Mater. Des. 32, 2034 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Ramesh Babu, S. Pavithran, M. Nithin, and B. Parameshwaran, Proc. Eng. 97, 800 (2014).CrossRefGoogle Scholar
  22. 22.
    Y.F. Sun and H. Fujii, Mater. Sci. Eng. A 528, 5470 (2011).CrossRefGoogle Scholar
  23. 23.
    ASTM E08/E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials (West Conshohocken: ASTM International, 2015).Google Scholar
  24. 24.
    V. Malik, N. Sanjeev, H. Hebbar, and S. Kailas, Proc. Eng. 97, 1060 (2014).CrossRefGoogle Scholar
  25. 25.
    R. Venkata, R. Madhusudhan, and R. Srinivasa, Defin. Technol. 113, 197 (2015).CrossRefGoogle Scholar
  26. 26.
    M. Besharati Givi and P. Asadi, Advances in Friction-Stir Welding and Processing, 1st ed. (Cambridge: Woodhead Publishing, 2014), pp. 278–292.Google Scholar
  27. 27.
    Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A 433, 50 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Bahrami, K. Dehghani, and M.K. Besharati Givi, Mater. Des. 53, 217 (2014).CrossRefGoogle Scholar
  29. 29.
    W. Li, P.L. Niu, S.R. Yan, V. Patel, and Q. Wena, J. Manuf. Process. 37, 159 (2019).CrossRefGoogle Scholar
  30. 30.
    Z. Ma, Metal. Mater. Trans. A. 39, 642 (2008).CrossRefGoogle Scholar
  31. 31.
    C. Hsu, C. Chang, P. Kao, N. Ho, and C. Chang, Acta Mater. 54, 5241 (2006).CrossRefGoogle Scholar
  32. 32.
    F. Adel Mehraban, F. Karimzadeh, and M.H. Abbas, JOM 67, 998 (2015).CrossRefGoogle Scholar
  33. 33.
    M. Barmouz, M. Givi, and J. Seyfi, Mater. Charact. 62, 108 (2011).CrossRefGoogle Scholar
  34. 34.
    A. Shamsipur, S. Kashani-Bozorg, and A. Zarei-Hanzaki, Surf. Coat. Technol. 206, 1372 (2011).CrossRefGoogle Scholar
  35. 35.
    H. Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, and M. Givi, J. Manuf. Proc. 21, 180 (2016).CrossRefGoogle Scholar
  36. 36.
    S. Arokiasamy and B. Anand Ronald, Int. J. Adv. Manuf. Technol. 93, 493 (2017).CrossRefGoogle Scholar
  37. 37.
    F. Chai, D. Zhang, Y. Li, W. Zhang, K.G. Balamurugan, and K. Mahadevan, J. Manuf. Proc. 15, 659 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Faculty of Mechanical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations