Advertisement

JOM

pp 1–8 | Cite as

Comparative Study of Yttria-Stabilized Zirconia Synthesis by Co-Precipitation and Solvothermal Methods

  • Yang Li
  • Qiaolin Han
  • Yao Yao
  • Mian Li
  • Peng Dong
  • Lina Han
  • Xiaoyuan Zeng
  • Jiang Liu
  • Jiaming Liu
  • Yingjie ZhangEmail author
  • Jie XiaoEmail author
Solid Oxide Fuel Cells: Recent Scientific and Technological Advancements
  • 22 Downloads

Abstract

Yttria-stabilized zirconia (YSZ) at 8 mol.% is the most commonly used electrolyte material in the solid oxide fuel cell field. In this study, co-precipitation and solvothermal methods are used to synthesize nanocrystalline yttria-stabilized zirconia. The effects of the synthesis condition (calcination temperature) and different methods on the crystal phase, the microstructure and the electrical performance of YSZ are comparatively investigated and analyzed in detail. X-ray diffraction results reveal that both the co-precipitation and solvothermal methods can be used to successfully synthesize nano-YSZ ceramic powders with a pure crystal phase of fluorite cubic structure. The grain sizes of the YSZ samples prepared by these two methods are both smaller than that of the commercial Tosoh YSZ, with the sample from the solvothermal method revealing the smallest grain size. The electrochemical impedance spectra demonstrate that the YSZ prepared by co-precipitation with 500°C calcination reveals the smallest ohmic resistance among different calcination temperatures. It also shows a relatively lower ohmic resistance of 2.04 Ω cm2, while the YSZ sample synthesized by the solvothermal method has a higher ohmic resistance of 8.89 Ω cm2, with corresponding ionic conductivities of 0.0266 S cm−1 and 0.00562 S cm−1, respectively.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Foundation of China (Nos, 51764029, 51802134, 91745203), the Applied Basic Research Plan of Yunnan Province (Nos. 2015FD007, 2017FD091), the Scientific Research Start-up Fund of Kunming University of Science and Technology of Introducing Talents (No. KKZ3201652004), the Analysis and Testing Foundation of Kunming University of Science and Technology, the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2014ZT05N200), and the NSFC-Guangdong Joint Fund (No. U1601207).

References

  1. 1.
    R.M. Ormerod, Chem. Soc. Rev. 32, 17 (2003).CrossRefGoogle Scholar
  2. 2.
    J. Xiao, W. Cai, J. Liu, and M. Liu, Int. J. Hydrog. Energy 39, 5105 (2014).CrossRefGoogle Scholar
  3. 3.
    H. Wu, J. Xiao, Z. Zeng, X. Li, J. Yang, Y. Zou, S. Liu, P. Dong, Y. Zhang, and J. Liu, Appl. Energy 248, 679 (2019).CrossRefGoogle Scholar
  4. 4.
    Y. Xie, J. Li, J. Hou, P. Wu, J. Liu, and Q. Liu, J. Fuel Chem. Technol. 46, 1168 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Xie, X. Wang, J. Liu, and C. Yu, Acta Phys Chim Sin. 33, 386 (2017).Google Scholar
  6. 6.
    J. Xiao, D. Han, F. Yu, L. Zhang, J. Liu, Z. Zhan, Y. Zhang, and P. Dong, J. Alloys Compd. 688, 939 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Xiao, Y. Xie, J. Liu, and M. Liu, J. Power Sources 268, 508 (2014).CrossRefGoogle Scholar
  8. 8.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
  9. 9.
    S.D. Souza, S.J. Visco, and L.C.D. Jonghe, J. Electrochem. Soc. 144, L35 (1997).CrossRefGoogle Scholar
  10. 10.
    D. Das, B. Bagchi, and R.N. Basu, J. Alloys Compd. 693, 1220 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Xiao, X. Zeng, M. Li, P. Dong, H. Wu, M. Xu, Y. Lin, J. Liu, Y. Xie, and Y. Zhang, Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.06.270.Google Scholar
  12. 12.
    E. Iguchi and S. Mochizuki, J. Appl. Phys. 96, 3889 (2004).CrossRefGoogle Scholar
  13. 13.
    J. Grabis, A. Kuzjukevics, D. Rasmane, M. Mogensen, and S. Linderoth, J. Mater. Sci. 33, 723 (1998).CrossRefGoogle Scholar
  14. 14.
    X. Xin, Z. Lü, Z. Ding, Z. Huang, Z. Liu, X. Sha, Y. Zhang, and W. Su, J. Alloys Compd. 425, 69 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Farhikhteh, A. Maghsoudipour, and B. Raissi, J. Alloys Compd. 491, 402 (2010).CrossRefGoogle Scholar
  16. 16.
    Z. Sun, L. Liu, L. Zhang, and D. Jia, Nanotechnology 17, 2266 (2006).CrossRefGoogle Scholar
  17. 17.
    Q. Han, M. Yu, and J. Liu, Micro. Nano. Lett. 8, 238 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Xiao, Q. Han, F. Yu, Y. Zhang, H. Wu, X. Li, X. Zeng, P. Dong, Y. Zhang, and J. Liu, J. Alloys Compd. 731, 1080 (2018).CrossRefGoogle Scholar
  19. 19.
    J. Lu, Y. Jiang, Y. Zhang, J. Huang, and Z. Xu, Ceram. Int. 41, 3714 (2015).CrossRefGoogle Scholar
  20. 20.
    S. Li, B. Zhou, B. Ren, L. Xing, L. Tan, L. Dong, and J. Li, Mater. Lett. 171, 204 (2016).CrossRefGoogle Scholar
  21. 21.
    L. Tantis, M. Dozzi, L. Bettini, G. Chiarello, V. Dracopoulos, E. Selli, and P. Lianos, Appl. Catal. B 182, 369 (2016).CrossRefGoogle Scholar
  22. 22.
    M.M. Momeni, Y. Ghayeb, and Z. Ghonchegi, Ceram. Int. 41, 8735 (2015).CrossRefGoogle Scholar
  23. 23.
    A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett. 8, 2012 (2008).CrossRefGoogle Scholar
  24. 24.
    B. Bagchi and R.N. Basu, J. Alloys Compd. 647, 620 (2015).CrossRefGoogle Scholar
  25. 25.
    K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, and K.N. Ganesha, J. Alloys Compd. 578, 53 (2013).CrossRefGoogle Scholar
  26. 26.
    K.C. Anjaneya, G.P. Nayaka, J. Manjanna, V.M. Ashwin Kumar, G. Govindaraj, and K.N. Ganesha, J. Alloys Compd. 598, 33 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Metallurgy EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China
  4. 4.Hangzhou Great Star Industrial Co. LtdHangzhouPeople’s Republic of China

Personalised recommendations